Date: November 2021
Linked Encrypted Transaction Streams (LETS)
Version 1.0__

OMG Document Number: mars/2021-11-01
Normative reference: http://www.omg.org/spec/lets/1.0/

Machine readable file(s):
There are no machine readable files in this submission
__

Copyright © 2021, IOTA Foundation
Copyright © 2021, Object Management Group, Inc.
USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and notices set forth below. This document does not represent a commitment to implement any portion of this specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ , and OMG SysML™ are trademarks of the Object Management Group. All other products or company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software developed only partially matching the applicable compliance points may claim only that the software was based on this specification, but may not claim compliance or conformance with this specification. In the event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/report_issue.)

Table of Contents

v0
Supporting Material

11
Scope

11.1
Background and Motivation

11.2
Relationship to OMG DDS Specification

31.3
Matters Not in Scope

31.3.1
Distributed Ledger Transaction Relations

31.3.2
Security Audit

42
Conformance

42.1
Computationally Independent Model (CIM) Conformance

42.1.1
Base level Protocol

42.1.2
Support for chaining, branching etc.

42.1.3
Encryption Algorithm Implementations

42.1.4
Provision of user-facing encryption selection

42.1.5
Provision of encryption-based signing of messages

42.2
Platform Independent Model (PIM) Conformance – All PIMs

42.2.1
Local Profile Definition Conformance

52.3
Sponge-based PIM Conformance

52.3.1
Digital Signature Arrangements

52.3.2
Encryption Arrangements

52.3.3
Message Topologies Conformance

63
References

74
Terms and Definitions

85
Symbols

85.1
Symbols and Notation

85.2
Abbreviations

96
Additional Information

96.1 Acknowledgments

107
Introduction

107.1
Intended Audiences for this Specification

128
LETS Computationally Independent Model (CIM)

128.1
CIM Overview

128.2
CIM Detailed Requirements

138.3
Detailed Requirements

138.3.1
Digital Signature Arrangements

138.3.2
Digital Signature and Encryption Limitations

138.3.3
Message Topologies

138.3.4
Encryption Arrangements

148.3.5
User Application Arrangements

159
Platform Independent Models (PIM) Common Features

159.1
Introduction

159.1.1
The Data Description and Modification Language (DDML)

159.2
LETS Local Protocols

159.3
PIM Common Requirements

169.3.1
Protocol Goals, User Roles etc.

169.3.2
Transport Requirements

1710
Sponge Based PIM

1710.1
Introducing the Sponge Construction

1710.1.1
The Keccak Sponge Construction Family

1710.1.2
How Sponge Works

1910.1.3
Sponge Operation

2010.2
Sponge usage in LETS Sponge-based PIM

2010.2.1
DLT Node Operation

2010.2.2
Message Squeezing

2110.3 Sponge Based Streams Framework Description

2210.4
Cryptography

2210.5
The Spongos Automaton

2210.5.1
Spongos Automaton Interface and Operations

2610.5.2
Pseudo Random Number Generator (PRNG)

2610.5.3
Ed25519

2610.5.4
X25519

2710.6
The Data Description and Modification Language (DDML)

2710.6.1
DDML Description

2710.6.2
DDML Syntax

2710.6.2.1
Types

2810.6.2.2
Modifiers

2810.6.3
DDML Commands

2910.7
Message Preparation

3010.8
Message Transportation

3010.8.1
Packetization and Framing

3010.8.1.1
Header Descriptor Frame (HDF)

3110.8.1.2
Encoding Type Field

3110.8.1.3
Version Number Field

3110.8.1.4
Message Type Field

3110.8.1.5
Uniform Payload Length Field

3110.8.1.6
Frame Type Identifier Field

3210.8.1.7
Payload Carrying Frame Count Field

3210.8.1.8
Payload Carrying Frame (PCF)

3210.8.1.9
Frame Type Identifier Field

3310.8.1.10
Payload Carrying Frame Number Field

3310.8.1.11
Payload Data Field

3411
Injected Checksum-based PIM

Preface
OMG

Founded in 1989, the XE "Object Management Group, Inc. (OMG)" Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry standards consortium that produces and maintains computer industry specifications for interoperable, portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to enterprise integration that covers multiple operating systems, programming languages, middleware and networking infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, XE "OMG specifications" OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

· CORBA/IIOP

· Data Distribution Services

· Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

· UML, MOF, CWM, XMI

· UML Profile

Modernization Specifications
Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

· CORBAServices

· CORBAFacilities

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

OMG Domain Specifications

Signal and Image Processing Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English. However, these XE "typographical conventions" conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification, or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/report_issue.htm.

0 Supporting Material
The full name of the submission:

Linked Encrypted Transaction Streams

A complete list of all OMG Member(s) making the submission, with a named contact individual for each:

The IOTA Foundation
The acronym proposed for the specification (e.g. UML, CORBA)

LETS
The name and OMG document number of the RFP to which this is a response

Linked Encrypted Transaction Streams Request For Proposal

MARS/20-12-21
The OMG document number of the main submission document

MARS/21-11-01

Overview or guide to the material in the submission

The notion of providing for linked streams of encrypted and non-encrypted transactions for use with distributed ledgers is considered to be an important one whether or not this is implemented by means of the sponge-based arrangements used in the IOTA Streams framework and protocols. At least one other arrangement has been seen (also within the IOTA community) which uses other arrangements.
For this reason, this specification sets out both the sponge-based arrangement (as a Platform Independent Model PIM) and the design-independent arrangements for linking and encrypting or signing streams of messages, in the form of a Computationally Independent Model (CIM).

Further, the Sponge-based PIM described here, based on the IOTA Streams 'Framework', is itself defined (by the IOTA Foundation) as a framework from which any number of local protocols may be derived. These local protocols would contain more detailed implementation features as appropriate for specific DLTs (such as, but not limited to, the IOTA Tangle DAG-based DLT), for example to reflect different message payload sizes and consensus arrangements. Conformance to the Sponge-based PIM is therefore asserted by local protocols, which while more 'platform' specific, are still logical models capable of being implemented by different end user applications.

If the proposed breakdown of the specification into CIM and PIM(s) is not considered to be acceptable, a revised submission can be made which specifies the sponge-based PIM only. However, this would seem to impose an unnecessary limitation on the range of ways in which LETS could be implemented.

A second PIM, characterized in this specification as the 'Injected Checksum-base PIM' exists in an example implementation (the SKALY Freighter protocol) but has not been fully written up in this initial submission. This would be added in the revised submission if the current structure and breakdown of CIM and PIM is considered acceptable.

Statement of proof of concept (see 4.8)

The Sponge-based PIM described in this specification, based on the IOTA Streams framework, has at least one physical implementation in the form of the IOTA 'Channels' application. This application uses a local protocol based on the Sponge-based PIM and the DDML language that forms part of that, and is designed specifically to run on the IOTA Tangle.

This Channels application is currently in operation on the IOTA 'Chrysalis' network, where end user applications in various 'proof of concept' stages of maturity are in use or being developed. Streams (as implemented in the Channels application) is also seen as an adjunct to IOTA Smart Contracts, performing the role of a kind of 'oracle' or source of data for smart contracts.
The IOTA Channels application end users are themselves developers of end user applications. Channels is made available as a public API for a Rust library as well as wasm and C bindings, among others.

Example applications being explored with the IOTA Channels application include:

· Simple chat

· RSS News Feed

· Slack-like chat with private groups

If the proposal does not satisfy any of the general requirements stated in Section 5, a detailed rationale explaining why

N/A

Discussion of each of the “Issues To Be Discussed” identified in Section 6.

Section 6 of the RFP left a question open as to whether conformant applications described in the RFP were to define specific encryption arrangements or allow for the end user to select and use different encryption algorithms.
In the event, this specification allows for the creation of local protocols each incorporating features of the Streams protocol (the Sponge-based PIM) as described. Consumers of this specification are themselves developers of end user applications (and of the local protocols to support those applications) so in the end it would appear that such choices are to be made (and documented) in the creation of the Local Protocol itself.

An explanation of how the proposal satisfies the specific requirements and (if applicable) requests stated in Section 6.

The specific arrangements set out for different message topologies and different encryption options and arrangements in Section 6 of the RFP are all set out both in the CIM (Clause 8) and again in detail for the Sponge-based PIM in Clause 10. Different local protocols may or may not implement each of the message topologies and encryption and digital signature arrangements, and these are itemized as numbered conformance points in Clause 2 so that any specific Local Protocol may itemize which features are supported.
It is anticipated that this initial submission will receive considerable feedback that will enable a more robust revised submission to be submitted.

In particular, it may be possible to describe some of the messaging topologies or arrangements in terms of the OMG DDS standard, or to require that Local Protocols developed with reference to this specification also make reference to DDS and other OMG specifications as applicable. The OTA Foundation would be interested in working with other OMG member firms to improve those aspects of the specification.

1 Scope

This specification relates to information that may be included within distributed ledger technology (DLT) transactions that enable them to be related to other DLT transactions, typically on the same ledger or ecosystem.

This specification defines standardization of the provision of linked streams of user messaging or information exchange, with a range of features covering message encryption, linking of messages into streams, message metadata and other features such that any one message may be linked to other messages or to an overall context (such as workflow process) for the overall message stream, and with the specification of different levels of secrecy / accessibility of messages and the potential for digital signature of messages. It also covers features such as branching and chaining of messages or sets of messages.

The scope of this specification does not include matters relating to how DLT transactions are posted to the underlying distributed ledger, and does not include matters pertaining to the business payload of those messages.

In addition to not being dependent on any specific DLT implementation, conformant applications and messaging protocols need not explicitly depend on distributed ledger technology at all.

This specification considers DLT ecosystems in terms of ‘layers’ (comparable to the OSI 7-layer model for communication protocols, though not a direct reflection of that). Specifically, this specification regards the ‘Blockchain’, or Tangle or other Distributed Immutable Data Object, as one layer, which is outside the scope of this specification, and a separate linked messaging capability which may sit on top of that, at a different abstraction layer, which is what is covered by this specification.
1.1 Background and Motivation
In this current globalized world, an immense amount of data is shared and propagated by millions of devices every second. Although this data varies wildly in size and structure, it always faces a common challenge: how to transmit, store and share it in a secure manner. Over the years, a great number of protocols and solutions have been developed to tackle this challenge. However, while some of these have already achieved great success, all of them share the same handicap: they depend on a centralized storage where data is authenticated and secured, and where the access control policies are managed and enforced. This reliance on a centralized storage makes any solution inherently fragile, and forces users to relinquish the ownership of their data for the sake of security.

Generally, in these protocols the security layer is an optional outer layer that encrypts the data during transport. Once this layer is unwrapped, the data is processed as plaintext, and it is up to the application to enforce any other defense mechanism to protect the data at rest.

The motivation of the LETS specification is to put security at the core layer of the protocol. This provides confidentiality all the way down to the data layer, and can also provide authentication and authorization policies embedded in the same communication protocol, making any centralized security enforcement point redundant.

This document outlines the specifications for such a protocol, including a reusable logical framework that can be used to build this or any other decentralized security and communication protocol.
1.2 Relationship to OMG DDS Specification
This specification does not overlap with or replace the [DDS] standard. To understand how the LETS specification relates to DDS, please refer to figure 1.1 below, from the [DDS] specification.

[image: image1.emf]
Figure 1.1: DDS Overview (Figure 2.1 ‘Overview’ in the [DDS] specification)
Referring to Figure 1.1, the DDS specification defines a logical and physical model for two sets of objects (two classes), one for the sending side and one for the receiving side of the transfer of some data object, or topic. These are the DataWriter and Publisher on the sending side and the Subscriber and DataReader on the receiving side. The dotted line between these refers to the matter of ‘dissemination’ of the data.

The material covered in the scope of the LETS specification is that part of the diagram identified by the bold dashed line, as ‘dissemination’ in this diagram.

In a distributed ledger based system, and potentially for distributed application in other settings (known as dApps), the arrangement for disseminating data may differ from more conventional point to point arrangements. The LETS specification deals with one such scenario, in which sets of publishers and subscribers may disseminate and receive information via a distributed communications system, where multiple nodes in the network may be carrying the same information and performing the same operations; and may elect to restrict access to some or all of this information to selected subscribers, as well as digitially signing some or all of these messages so that subscribers may validate the message content and / or sender identity. Similarly, even in non-distributed transport protocols (e.g. TCP/IP), participants in some data sharing my with to encrypt and / or digital sign messages.

All of these matters are outside the stated scope of the DDS specification, and are complementary to it. That is:

· LETS interacts directly with the transport layer

· Applications may interact directly with LETS without reference to DDS

· Applications may interact directly with DDS without reference to LETS

· Applications may interact with DDS in such a way that the DDS messages interact with LETS

· LETS does not depend DDS

In summary, LETS does not depend on DDS but DDS payloads may be LETS payloads.
LETS provides additional features and capabilities for the dissemination of data, which may be used by a DDS application or directly without DDS, and which may itself use a DLT transport or work directly on a conventional transport layer, of the sort on which DLT protocols themselves would normally run.
The LETS specification is intended to be able to operate not only on distributed ledger systems / protocols but also on IP networks (TCP/IP or UDP/IP), Protobuf, ZeroMQ and so on. The ‘transport’ layer can be a distributed ledger layer which itself runs on top of a transport layer such as IP (TCP / UDP), ZeroMQ, Protobuf etc., or the LETS components may interact directly with such a transport layer.
1.3 Matters Not in Scope

1.3.1 Distributed Ledger Transaction Relations

The ability to define relationships between and among sets of messages in this specification does not relate to the relationships between transactions (sometimes referred to as messages) on any distributed ledger itself, i.e. any blockchain or graph-based ledger structure. Nor are the message-to-message relationships described in this specification intended to provide any additional connection information or other facility at the level of the distributed ledger, i.e. this is not intended to address any real or perceived problem in the management of transaction or message structures in any distributed ledger.
1.3.2 Security Audit

The requirements for security audit of applications are not included in the scope of this specification. Individual end user applications may undergo a security audit and may assert their status in respect of that, alongside and independently of asserting conformance to any aspect of the CIM or a PIM defined in this specification, of the conformance of a defined local protocol (PIM) designed in conformance with this specification.

2 Conformance

This clause identifies which clauses of the specification are mandatory (or conditionally mandatory) and which are optional in order for an implementation to claim conformance to the specification.

Separate conformance sub-clauses are identified for conformance to the CIM, all PIMs, and the Sponge-based PIM.
2.1 Computationally Independent Model (CIM) Conformance

In addition to the PIM(s) defined in this specification, enablers of end user applications may provide additional PIMs which are intended to conform to the CIM component of this specification alone, as defined in Clause 8.

LETS PIMs shall conform to one of more of the following CIM conformance points.
2.1.1
Base level Protocol

The LETS PIM shall define the base level profile by which content shall be provided within the content of messages such that these may be linked to other messages.

2.1.2 Support for chaining, branching etc.

LETS PIMs shall define a range of different transaction stream topologies, including those defined in the Clause 8.

2.1.3 Encryption Algorithm Implementations

Optionally, a conformant end user application may support the encryption and decryption of messages or combinations of messages under one or more of a range of available encryption algorithms. PIMs may optionally support a range of different encryption algorithms and arrangements.
2.1.4 Provision of user-facing encryption selection

Optionally PIMs shall define the means by which different encryption methods are to be applied to the encryption of messages or message streams.

2.1.5 Provision of encryption-based signing of messages

Optionally, PIMs shall define the means by which different cryptography-based methods are to be applied to the digital signing of messages, message streams or parts of message streams.

2.2 Platform Independent Model (PIM) Conformance – All PIMs
The Sponge-based PIM described in this specification, and all other PIMs, define the definition of one or more 'Local Profiles' to be implemented by end user applications. As a minimum, these Local Profiles shall conform to the following conformance points as defined in Clause 9:

2.2.1 Local Profile Definition Conformance
The Local Profile developed against a specific PIM shall be documented in a uniquely identifiable and formally controlled specification in which the information set out in Clause 9.3 shall be defined.
2.3 Sponge-based PIM Conformance

In the case of the Sponge-based PIM as described in Clause 10, conformance is to be asserted on the part of a defined Local Protocol. End users will in turn conform to an identifiable, published version of that Local Protocol.
This clause defines the conformance points to which any given Local Protocol shall assert conformance.

2.3.1 Digital Signature Arrangements

Local Protocols shall conform with the arrangements for digital signature of messages as specified in sub-clause 10.3.

2.3.2 Encryption Arrangements

Local Protocols shall conform with the arrangements for encryption of messages as specified in sub-clauses 10.3, 10.4 and 10.5.
Local Protocols shall support the encryption and decryption of messages as described in sub-clauses 10.3, 10.5 and 10.5 for all of the following encryption arrangements, or shall explicitly assert conformance to specific numbered conformance points in the list below:
1 Public

2 Private

3 Restricted

4 Forward Secrecy

5 Branched encryption (Channel Splitting)

2.3.3 Message Topologies Conformance
Local Protocols shall conform with the provision of message topologies as specified in sub-clause 10.5. Specifically, Local Protocols shall support the production and consumption of messages as described in sub-clause 10.5 for all of the following message topologies and variations, or shall explicitly assert conformance to specific numbered conformance points in the list below:
1 The Local Protocol shall define arrangements whereby messages may be signed by the originator.

2 The Local Protocol shall stipulate that where messages are signed by the originator, subsequent messages in a stream shall carry a signature of the originator of the stream, or some means of determining the validity of that signature.

3 The Local Protocol shall define arrangements whereby messages may be encrypted, such that only selected participants in the ecosystem may decrypt them.

4 The Local Protocol shall define arrangements whereby it is possible for later messages in a stream or encrypted messages to be decrypted by selected participants without their having been able to decrypt earlier messages, provided that the originator of the message stream has authorized them to do so.
5 In order to support streams of messages in a branching structure, such that for specific messages in the stream, The Local Protocol shall define arrangements whereby more than one message may be attached to that message.

6 The Local Protocol shall define arrangements whereby individual branches of messages may be encrypted such that only selected participants in the ecosystem may decrypt the messages in that branch.

7 The Local Protocol shall define arrangements whereby it shall be possible for messages in a branch of encrypted messages to be decrypted by selected participants without their having been able to decrypt earlier messages, provided that the originator of the message stream has authorized them to do so.

8 The Local Protocol shall define arrangements whereby it shall be possible for later messages in a stream that forms part of a branch of encrypted messages to be decrypted by selected participants without their having been able to decrypt earlier messages in that branch, provided that the originator of the message stream has authorized them to do so.

3
References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

List of normative references.

	Abbreviation
	Reference

	[DDS]
	Data Distribution Service (DDS) version 1.4. OMG adopted specification formal/2015-04-10 available at http://www.omg.org/spec/DDS/1.4

	[Keccak]
	G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, The Keccak reference, Version 3.0, January 2011. Available at: http://keccak.noekeon.org/Keccak-reference-3.0.pdf

	[Keccak-f[1600]]
	Refers to the specific implementation of the [Keccak] sponge function for a size of 1600, supporting 1600/25 = 64-bit length.

	[NIST FIPS PUB 202]
	SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. NIST FIPS PUB 202. Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD. August 2015. Available at: http://dx.doi.org/10.6028/NIST.FIPS.202

3.2 Non-normative References

List of non-normative references.

	Abbreviation
	Reference

	[Keccak Site]
	Description of Sponge and Duplex constructions, available at: https://keccak.team/sponge_duplex.html

	[SHA-3]
	Hash function established from the NIST Hash Function Competition. Described at: https://en.wikipedia.org/wiki/NIST_hash_function_competition

	[Wikipedia: Sponge]
	Wikipedia article on sponge function .Available at https://en.wikipedia.org/wiki/Sponge_function

2 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Table 4.1: Terms and Definitions
	Term
	Definition

	Author
	User, creator and owner of the channel. The Author is the only user that can create branches and control access to them.

	Branch
	Subtree in message tree.

	Channel
	A logical collection of linked messages that forms a message tree

	Channel address
	Unique identifier for a Channel

	Identifier
	Identification marker of a user. This can be in the form of an ed25519 Public key or a PSKID

	Indexation
	Indexed location of a Tangle Message

	Link
	A Message Address used as a reference point to a previous message, and its sponge encryption state.

	Message
	A cryptographically processed piece of data consisting of a Header and a Content. Content depends on message content type.

	Message address
	URI of a message in the Transport medium, composed of the Channel Address and the Message ID

	Message ID
	Unique identifier for a message within a channel.

	Message tree
	Graph with messages as nodes and links as edges.

	Nonce
	[definition to be supplied]

	PRNG
	Pseudo-random number generator.

	PSK
	Pre Shared Key which can be used by multiple Subscribers for access to restricted branches.

	PSKID
	Pre Shared Key Identifier representing the Psk in store.

	Publisher
	User role, can publish authenticated messages in a channel, can restrict access to (encrypt) messages for a set of allowed Subscribers.

	Spongos Automaton
	A symmetric cryptography scheme based on a sponge construction.

	Subscriber
	User of a channel. Can consume or publish messages.

	Tangle Message
	An IOTA Tangle formatted message

	Transport
	Transport layer abstraction used to store and deliver messages.

	User
	Participant of a channel. Can be the Author of a channel or a Subscriber

3 Symbols

5.1
Symbols and Notation

The following mathematical notation and symbols are used in this specification (Table 5.1):

Table 5.1: Notation

	⊥
	Empty value or argument

	u <- a
	Assign a value a to a variable u

	{0,1}ⁿ
	The set of all binary words of length n

	{0,1}*
	The set of all binary words of finite length

	αⁿ
	The concatenation of α with itself n times

	|X|
	The length of a binary word X

	X[i]
	The i-th bit of a binary word X

	a ∥ b
	The concatenation of two binary words a and b

	F
	Spongos permutation, currently Keccak-f[1600] is used

	S
	Spongos state

	R
	Rate of the spongos state. Size in bits of data that spongos automaton is capable of processing per each permutation call, R = 1344

	C
	Capacity of the spongos state. Size in bits of the inner secret part of the Spongos state. C = 256

	N
	Width (size in bits) of the spongos state, N = C + R = 1600

5.2
Abbreviations

The following abbreviations are used throughout this specification (Table 5.2):

Table 5.2: Abbreviations

	Abbreviation
	Stands for

	ASCII
	American Standard Code for Information Interchange

	DAG
	Directed Acyclical Graph

	DIDO
	Distributed Immutable Data Objects

	DLT
	Distributed Ledger Technology

	eDSL
	[to be supplied]

	IoT
	The Internet of Things

	IOTA
	This is not an abbreviation but is the brand name adopted by the IOTA Foundation and reflects the application of this technology in the Internet of Things (IoT).

4 Additional Information

6.1 Acknowledgments

The following companies submitted this specification:

· IOTA Foundation
The following companies supported this specification:

· SKALY
5 Introduction
This clause presents the normative specification for Linked Encrypted Transaction Streams (LETS).
This specification is described with reference to three kinds of artifact:

· Computationally Independent Model (CIM)

· Platform Independent Model (PIM)

· Platform Specific Model (PSM)

The LETS Specification itself is defined at two levels: the Computationally Independent Model (CIM) and Platform Independent Models (PIM) that are intended to conform to the CIM.

The intent of the PIM clauses is to provide the means for more context-specific ‘local protocols’ to be defined. Those protocols are also Platform Independent Models and are that to which end user applications may assert conformance.

Additional PIMs may be developed that conform to the CIM clauses of this specification but are not described here.

PSMs are developed by end users (themselves developers of applications for individual or business end users), in accordance with the local protocols derived from a PIM described in this specification. Such PSMs are not in the scope of this specification.

In summary:

CIM:

The CIM defines the required behaviors of a conformant PIM and by extension of any ‘local protocol’ derived in accordance with that PIM; and by further extension any end user application designed to conform to that local protocol.

PIM:

Two PIMs are included that are intended to be conformant with the CIM. These are normative. Other PIMs may be developed that would assert conformance to the CIM only.

PSM:

This specification does not assert a PSM to which applications are intended to be able to assert conformance. Instead, this specification defines the notion of a local ‘Protocol’ that is intended to implement one or other of the PIMs. Individual local Protocols are developed by application developers or interested parties, and may be used in one or more LETS-conformant end user applications. This specification defines how to derive such a Protocol.

5.1 Intended Audiences for this Specification

In common with most specifications of this nature, the intended audience is intended to be a developer of applications that are intended to conform to this specification or clauses thereof. Unlike many such developments, it is assumed that the end user of that development is not a business user or a member of the public, but other developers. That is, items developed in accordance with this specification may take the form of code libraries or interfaces, reusable code or other items that may be used by others who would develop applications.

There is a further indirection or step between the reader of this specification and the end user of any software application. The end user software will include among other components the provision of messaging that is linked and optionally signed and / or encrypted as described in this specification; that messaging will conform directly to a localized ‘protocol’ derived from the Platform Independent Model defined in this specification. That local ‘protocol’ will for example include platform specific matter such as the underlying transport protocol (for example a specific distributed ledger or a conventional networking protocol), but will in other ways be a PIM against which the application designer will develop platform-specific application code.

For these reasons, the reader of this specification is someone who will derive a more specific (in particular, a transport layer specific) ‘local protocol’, for which an application developer (usually but not necessarily themselves) would then develop an application that may use that protocol, along with other standards and protocols (for example DDS), all as part of the development of the end user application.
6 LETS Computationally Independent Model (CIM)
This clause describes a Computationally Independent Model (CIM) for the linking and optional encryption or digital signature of messages to make up a system of Linked Encrypted Transaction Streams (LETS).

Data structures that are generally described as ‘transactions’ in the context of their being posted to an immutable distributed data structure (such as a blockchain or DAG / Tangle), perform the role of ‘messages’ in the context of the LETS described in this specification, and are referred to as 'messages' throughout this specification.

The Platform Independent Model(s) (PIM) described in this specification, and any other PIM that asserts conformance to this CIM clause shall define a logical implementation of the behaviors in this clause, either in full or as conformance to specific sub-sets of these behaviors. The PIM will itself define the arrangements for defining local protocols that incorporate additional features appropriate to specific platforms, distributed ledgers or transport protocols.
6.1 CIM Overview

PIMs shall specify a means to define relationships between distinct transactions that are posted to a distributed ledger system, and a means to manage encryption and decryption of such messages.

These requirements are described in the CIM in terms of two distinct features:

· Message topologies

· Encryption arrangements

The PIM shall define how messages may be digitally signed by their authors, and how signed messages may either:

· be made available to anyone (‘public’); or

· be encrypted such that only individuals in possession of the appropriate decryption key may read them.

The PIM may optionally define how conformant applications are able to make use of a range of applicable algorithms for digital signature and for encryption and decryption.

6.2 CIM Detailed Requirements

LETS PIMs shall:

· define the way in which transactions posted to a distributed ledger make reference to selected other transactions posted to that distributed ledger, such that these messages have relationships defined between them, without reference to the underlying mechanisms by which those transactions are posted to that distributed data structure.
· make no direct reference to and have no dependency on features of the underlying distributed ledger system in those arrangements

· be able to be implemented for any distributed ledger technology as well as non-DLT environments

· individual conformant applications may themselves be limited to specific DLTs or classes of DLT

· provide some means for the user signature of messages within linked streams of messages.

· provide means for the user encryption of messages within linked streams of messages or within parts of those streams, and of streams or parts of streams

· include a range of ways in which the content of messages may be made obscure and made clear, to different combinations of parties. For example, a message or message stream may be encrypted by one party for decryption by other parties selected by them, or to defined groups of parties

6.3 Detailed Requirements
8.3.1
Digital Signature Arrangements

Digital signature of messages shall be supported by the PIM.

8.3.2
Digital Signature and Encryption Limitations

Where digital signature arrangements provide for only a limited number of uses (for example Winternitz one-time signatures, [WOTS]), the PIM shall stipulate the arrangements whereby streams of messages containing larger numbers of messages may be connected and signed.

Where encryption arrangements provide for only a limited number of uses, submissions shall stipulate arrangements by which streams of messages containing larger numbers of messages may be connected.

6.3.1 Message Topologies

Linked streams of transactions, with various arrangements for signature and encryption, shall be able to be connected in different physical topologies, for example as linear streams, as branching structures and as combinations of these two basic topologies.

To support this, a LETS PIM shall:

· define arrangements whereby messages may be signed by the originator.

· stipulate that where messages are signed by the originator, subsequent messages in a stream shall carry a signature of the originator of the stream, or some means of determining the validity of that signature.

· define arrangements whereby messages may be encrypted, such that only selected participants may decrypt them.

· define arrangements whereby it is possible for later messages in a stream or encrypted messages to be decrypted by selected participants without their having been able to decrypt earlier messages, provided that the originator of the message stream has authorized them to do so.

· In order to support streams of messages in a branching structure, define arrangements whereby more than one message may be attached to a given message.

· define arrangements whereby individual branches of messages may be encrypted such that only selected participants may decrypt the messages in that branch.

· define arrangements whereby it shall be possible for messages in a branch of encrypted messages to be decrypted by selected participants without their having been able to decrypt earlier messages, provided that the originator of the message stream has authorized them to do so.

· define arrangements whereby it shall be possible for later messages in a stream that forms part of a branch of encrypted messages to be decrypted by selected participants without their having been able to decrypt earlier messages in that stream, provided that the originator of the message stream has authorized them to do so.

6.3.2 Encryption Arrangements
The PIM shall define one or more ways in which different messages, collections of messages, message chains, parts of message chains etc. (as applicable under the different message topologies) may be encrypted and decrypted by different combinations of participants in the business activities supported by conformant end user applications.

The PIM shall support the following encryption arrangements:

· Public

· Private

· Restricted

· Forward Secrecy

· Branched encryption (Channel Splitting)

6.3.3 User Application Arrangements
The combination of message topologies and encryption arrangements, taken together, describe the publication of and subscription to individual messages, streams of messages and other combinations of messages. These potential combinations shall be described in the PIM using an appropriate formal notation.
The PIM shall include design information to support the following usage scenarios:
· Create channels for broadcasting messages;

· Create channel endpoints for protecting messages during broadcasting;

· Protect messages in different ways, for example, turn on / off encryption or authentication;

· Split messages into parts, protect and transmit each part independently;

· Set message recipients and provide them with key material in different ways
7 Platform Independent Models (PIM) Common Features
9.1 Introduction

Each Platform Independent Model (PIM) for LETS messaging defines how the audience for this specification is to define and publish a local protocol that conforms to that PIM. In this document, this protocol is referred to as the ‘Local Protocol’.

While any LETS PIM shall be independent of any underlying transport protocol or distributed ledger, individual Local Protocols may include data structures or other features that are specific to a given transport layer or distributed ledger.
Two PIMs are defined in this specification:

· Sponge-based Framework

· Injected Checksum-based Framework

These two PIMs fulfil the same requirements defined in the CIM, but differ in the ways that they meet the requirements for message encryption and authentication.

Other PIMs may be developed in conformance to the LETS CIM that are not included in this specification. This may include for example the use of a Merkle Tree and Winternitz one-time signature to fulfil the CIM requirement for secure signature of messages while retaining re-usability of those signatures.
9.1.1 The Data Description and Modification Language (DDML)

A further PIM component is defined in the form of a 'Data Description and Modification Language' (DDML). DDML is a message description language that has been designed with both data organization and cryptographic functionality in mind. DDML defines a set of functions specific to the Sponge-based PIM and forms an integral part of that PIM.
9.2 LETS Local Protocols
Local Protocols (‘protocol’) for LETS messaging shall be developed as defined in this PIM clause.

The resulting Protocol shall be documented as described in this specification. The Protocol documentation shall be published at a defined URL, as a formally versioned and dated document (not for example a Google document). Suitable forms of documentation and controlled location include GitHub repositories (for example as one or a set of MarkDown MD files), or as a static Word of PDF document hosted at the stated URL, or at a location a hash of which is posted to a distributed ledger.
The Local Protocol specification document shall have a version number and a publication date, and shall be managed such that anyone intending to build a messaging application that uses that protocol is reliably able to access the same version of the same Protocol as anyone else building an application, interface or other component that is intended to interoperate with other applications claiming to use the same Local Protocol.
9.3 PIM Common Requirements

LETS PIMs define a number of elements common to any LETS Local Protocol. These shall include as a minimum:

· Scope and Context:

· Application purpose

· Protocol goals

· User roles

· Transport layer protocol

· API Requirements (if any):

· How to wrap transport and protocol logic into API;

· How to use the API in an application.

· Protocol Parameters

· protocol steps

· define messages and commands using DDML

· How to implement message processing;

In addition a LETS Local Protocol may make reference to the data description and modification protocol (DDML) as defined in sub-clause 10.6 of this specification, or may define or may make reference to additional external standard(s) or specification(s) to define the data manipulation aspects of the PIM. While DDML is used as part of the sponge-based local protocol in one implementation it may in principle be used as part of other PIMs developed in conformance with the CIM clause of this specification.
9.3.1 Protocol Goals, User Roles etc.

The Local Protocol shall include a formal description of the process and roles, for example in terms of a business process model (BPMN or UML Activity Diagram), UML Sequence Diagram, or UML Use Case diagram(s).
9.3.2 Transport Requirements
The following shall be included in the LETS Local Protocol:

Overall Message size for messages (‘transactions’) posted to the underlying protocol. This is the size of messages that can be posted as a single message or transaction to the underlying DLT or transport layer.

Where there are specific message size limitations imposed by the underlying transport layer (DLT or conventional transport protocol), the Local Protocol shall also define any arrangements for linking or bundling individual ‘messages’ as defined at the Local Protocol level to accommodate individual application message payloads that are larger than one transaction in the underlying DLT would support.

Payload size. This is called the Uniform Payload Length Field’. For example 1024 bytes. This defines the number of bytes available as payload for messages, after the fields for the LETS PIM and LETS Local Protocol fields are taken into consideration.

Endian-ness: the Local Protocol shall define whether messages posted to the underlying transport (DLT or conventional transport protocol) are intended to be interpreted as big-endian or little-endian, or that this has no effect.

10 Sponge Based PIM
This part of the specification defines the framework with which to build decentralized secure protocols using sponge-based cryptography primitives, a message serialization eDSL as well as message preparation and transportation constructs.

10.1 Introducing the Sponge Construction
This PIM uses something called a sponge construction. A sponge construction is an algorithm that takes an input bit stream of any length and produces an output bit stream of any desired length. It has a finite internal state. The sponge construction used is described in [Keccak].

It is expected that the reader of this specification is able to familiarize themselves with and understand the [Keccak] sponge construction. Details of the manipulation operations are not repeated in this specification. Any conformant LETS Local Profile as defined under this LETS PIM shall conform to the relevant features of the sponge construction as defined in [Keccak].

10.1.1 The Keccak Sponge Construction Family

The Keccak-f sponge construction was originally envisioned as a point of reference for modeling cryptographic primitives, such as cryptographic hashes. The Sponge function output is virtually indistinguishable from a random set of digits and differs only in that it reflects to some extent available computer resources. Subsequent usage has been extended to include the implementation of message authentication codes, mask generation functions, stream ciphers, pseudo-random number generators, and authenticated encryption.

The sponge construction can also be used to build practical cryptographic primitives. For example, Keccak cryptographic sponge with a 1600-bit state has been selected by NIST as the winner in the [NIST SHA-3 competition]. The result of this competition was the publication of the SHA-3 hashing standard described in [NIST FPS PUB 202]. This uses the [Keccak] specification as referenced in this specification. The specific configuration used in this specification is the [Keccak-f[1600]] permutation.

According to [Wikipedia: Sponge]:

Keccak is based on a novel approach called sponge construction. Sponge construction is based on a wide random function or random permutation, and allows inputting ("absorbing" in sponge terminology) any amount of data, and outputting ("squeezing") any amount of data, while acting as a pseudorandom function with regard to all previous inputs. This leads to great flexibility.
The sponge construction is described in terms of a function ‘F’, the ‘Sponge function’ and a transformation f, along with a padding function Pad. The state of bits that is operated on is called the ‘state’.

Referring to the description on the [Keccak site], the sponge construction is a simple iterated construction for building a function F with variable-length input and arbitrary output length based on a fixed-length permutation (or transformation) f operating on a fixed number b of bits.
10.1.2 How Sponge Works

The sponge construction operates on a state of b=r+c bits, where.

· The value b is called the width.

· The value r is called the bitrate or simply rate
· The value c is called the capacity.

In the sponge construction, bits are arranged in a 3-dimensional array with length and width of 5 bits and a depth of a pre-defined number of bits, for example 64 bits in the case of the Keccak-f[1600] configuration. This is called the State Array. See Figure 10.1, taken from [NIST FIPS PUB 202].
[image: image6.png]

[image: image7.png]

[image: image8.png]State

Figure 10.1: The State Array for a Sponge Function

The Sponge construction has the following basic parameters and operations:

Input: inputs may be of arbitrary length and are processed a number of bits at a time. To achieve this, the incoming data is split into pieces of a fixed length. Padding is added, with some specific padding rules applied, to make up any shortfall in the final portion.

A function f that transforms the state memory. This function f is applied repeatedly to the 64-bit [thing]. The application of f here is called ‘absorbing’, meaning that the incoming information is ‘absorbed’ into the state of the sponge state array.

The f operation manipulates the 3-dimensional array in a number of ways, for example rotating or transforming the content in any one of the three planes provided as the state array. Each of these manipulation operations is identified by a Greek letter. These are not reproduced here: it is expected that the implementer of this specification shall be able to replicate these functions as described in the [Keccak] specification.
Note that each of these Greeks, apart from iota, is a self-contained transformation. The iota transformation takes an additional parameter and its inclusion in the set has the effect that the overall process is effectively not reversable. A more complete discussion of these considerations is given in the [Keccak] specification.
Each subsequent operation of the ‘absorb’ function causes the state array to be in a new state. Reference to the word ‘state’ in sponge-related documentation (including this specification) refers to this state.

The long side of the 3-dimensional cuboid (for example 64 bits in the case of the Keccak-f[1600] configuration), consists of two components: the rate (r) and the capacity (c). See figure 10.2.

[image: image2.png]absorbing | squeezing

P

Pn—1

f

Z,

T

Y]

—h

Figure 10.2: Absorbing and Squeezing in a Sponge Function

The component r is called the ‘rate’. This is the number of bits from the incoming source data that is included in the state for each operation of f.

The component c is called the ‘capacity’. This part of the state is never revealed.

The total of c + r makes up the width b of the state. That is the figure of for example 64 in the case of the Keccak-f[1600] configuration, since 64 is 1600 divided by 25 for the 5x5 length and height (x and y axes) of the array.

In Figure 10.2 it can also been seen how the separate parts of the incoming data (of a length of r each) are broken up into P0, P1 etc. Each incoming piece of the input data is XOR-ed with the existing value of r. The operation of f continues until the last piece of the incoming data is processed.

Subsequently the ‘squeeze’ operation works by repeatedly applying the same f operations for as many times as it needed to provide a string of the desired output length. The results of each subsequent operation, Z0, Z1 etc., are concatenated to provide the final output. Note that the bits that make up Z are taken only from the first r bits of each state.
10.1.3 Sponge Operation
As described in the [Wikipedia: Sponge] article, the sponge function operates as follows:
· State is initialized to zero

· The input string is padded. This means the input is transformed into blocks of |Bitrate| bits using Pad.

· for each |Bitrate|-bit Block of the padded input:

· Bitrate is replaced with Bitrate XOR Block (using bitwise XOR)

· State is replaced by f(State)

This process "absorbs" (in the sponge metaphor) all blocks of the padded input string.

The sponge function output is now ready to be produced ("squeezed out") as follows:

· the Bitrate portion of the state memory is output

· repeat until enough bits are output:

· State is replaced by f(State)

· the Bitrate portion of the state memory is output

If less than |Bitrate| bits remain to be output, then Bitrate will be truncated (only part of Bitrate will be output).
10.2 Sponge usage in LETS Sponge-based PIM

The sponge arrangement as used in this specification introduces two important departures from the conventional documented usage of the Keccak family of sponge functions. These are:

· Simultaneous operation on different notes of a DLT

· Squeezing is of subsequent messages in a stream rather than subsequent parts of the same source document

10.2.1 DLT Node Operation

The operations described in the sponge function are being carried out simultaneously on a number of different machines, or ‘nodes’ participating in the distributed ledger.

Then if a number of separate machines (nodes on the participating network) are independently applying the same sponge functions on the same inputs, in the same order, then at any point in that process they should locally have the same sponge state.

This arrangement is highly stateful, since a common understanding of message content and ordering depends on each node arriving at the same state for the sponge construction, before things can move on to the next set of operations to arrive at the next such state.

10.2.2 Message Squeezing

Conventionally, a sponge function is used by continuing to absorb until all the separated blocks of the incoming message (along with any padding) have been processed, after which the squeeze operation is iterated until the output of the desired length is achieved

In the case of the Sponge-based LETS PIM, the sponge state itself is used as a point of reference, without the need to squeeze new output data. Whereas a conventional sponge operation works on one piece of input data, the LETS Sponge PIM process retains the sponge state after processing of each message input (which itself will involve several iterations of the absorb process), and use that state as a point of reference when generating the next message in the stream. The sponge state itself is maintained indefinitely throughout the life of the channel or stream.

That is, while Keccak was originally designed to allow a single incoming document to be broken up into parts such that these parts are successively applied to the Sponge function, in the LETS Sponge-based PIM each subsequent piece of material added to the sponge function is potentially a different message in the LETS messaging stream rather than part of the same document.

While the original usage of the sponge function is to derive a unique hash of the original (single) document, in the LETS Sponge-based PIM it is the state of the sponge function itself (known as the 'sponge automaton') that forms the basis for the arrangements described in this PIM. The individual states of the Spongos Automaton are used as a point of reference to link or branch messages and message branches within a LETS Stream.

Figure 10.3 shows a simplified view of how this arrangement is used to define message streams.

[image: image3.jpg]Single Branch

p— = =

Generste new
masiage fom
v ik

Multi Branch
Init Channel Message 1-0
T
Generserew e
iy ez
message fon S TEHETED

v

wsgia 101
Spongos Sate
)

Ganarst e
[y
e o
v ik

sgiaz0
Spongos State
20)

Figure 10.3: Use of Sponge to define a LETS Stream
During message processing, data transformations update the internal sponge state. This sponge state serves as the premise for data continuity. Any further messages linked to this message must start where the previous state ended.
1. Sponge state can contain secret session info that must be propagated in the same branch

2. Sponge state must be maintained to be the same after wrapping (on sender’s side) and after unwrapping (on recipient’s side)
The ‘secret session info’ is the component ‘c’ of the b = r + c breakdown of the buffer / state (where ‘r’ = rate and ‘c’ = capacity)

10.3 Sponge Based Streams Framework Description
The sponge-based Streams PIM is a framework for developing cryptographic protocols (the 'Local Protocols'). This framework provides a toolset for structuring and transforming data for application-specific purposes, to be communicated over any transportation layer.

Features included in this framework are:

· Sponge-based automaton for message processing, data encryption and authentication

· Ed25519 signature scheme (RFC8032) and X25519 key exchange (RFC7748)

· Pseudo-random generator for secure key generation

· Data description and modification language (DDML)

As described in Clause 9 (PIM Common Features), in order to define the Local Protocol the following steps are required:

1 define application purpose, protocol goals, user roles;

2 define protocol steps, define messages with DDML, implement message processing;

3 select transport layer protocol;

4 wrap transport and protocol logic into API;

5 use the API in an application.

The Sponge-based Streams PIM defines the requirements for step 2.

The main tool the Streams framework provides is DDML. This is an encoding/decoding domain specific language with cryptographic security capabilities. With DDML, one is able to define messages, data fields, and rules for cryptographic processing.
DDML can be interpreted in two main ways: payload data can be wrapped into a binary message and a binary message can be unwrapped to extract payload data. DDML supports Spongos automaton operations, signature and key exchange operations, and can be extended with custom cryptographic primitives.

The Sponge-based Streams PIM is intended for wide use across different types of systems and applications. With such wide support it needs to target different transport media such as the IOTA Tangle and TCP. Some transportation platforms can be described as a bag of unordered asynchronous messages. In order for Streams to be usable on these mediums it needs to be extended with meta-information for packetization and sequencing. The packetization tools provide a means for Local Protocols to be constructed that abstract, secure and structure data for processing over these transportation layers. For example, in the IOTA Channels protocol (an example of a Local Protocol derived from this PIM), a specific ordering mechanism called sequencing facilitates messaging without risk of conflicts in an easy to process manner.
10.4 Cryptography

Cryptographic capabilities include symmetric cryptography via spongos automaton as well as Ed25519 signature scheme and X25519 key exchange. The Spongos automaton provides data integrity and confidentiality and can be used to generate pseudo-random data. The Spongos automaton is a sponge construction and uses Keccak-f[1600] as permutation.

10.5 The Spongos Automaton
A Spongos automaton is a symmetric cryptography scheme based on sponge construction. The automaton acts as a finite state machine that maintains an internal state and supports a number of operations to update this state. The state is modified by a pseudo random permutation. The spongos state consists of an inner secret part and an outer part available for the use by spongos operations. The inner part of the state guarantees cryptographic security and must be kept secret.
In terms of the descriptions given in sub-clause 10.1 on general Sponge concepts, the size of the inner part is called the capacity. The size of the outer part is called the rate and determines the size of input/output data block. In this specification the permutation is fixed to Keccak-f[1600] with the state size of 1600 bits, 1344 bit rate and 256 bit capacity.

The spongos operations take byte string as input or no input at all, modify the internal state and produce byte string as output or no output at all. The operations are constructed to provide data confidentiality, confidential and additional data integrity and authenticity, and generate pseudo random data. The spongos automaton functions by calling several operations in succession and can be used to implement interfaces of a hash function, authenticated encryption, or PRNG.
10.5.1 Spongos Automaton Interface and Operations
The Spongos automaton maintains an internal state: a permutation buffer S and the current offset position within it. The buffer should be kept in secret as it contains the required data to process and possibly mask the next message. The Spongos internal state is passed implicitly and is available to the automaton interface functions.

The Spongos operations are described below using the logical notations defined in 5.1 Symbols and Notation.

Init
Init is the Spongos automaton state initialization. This is the first command executed by the automaton.
	Init
Input : ⊥
Output: ⊥
Steps :

1. S <- 0ᴺ

2. pos <- 0

Commit
The Commit operation commits changes to the buffer by applying the permutation function to the Spongos state. The position cursor is reset to 0. This command is usually called between absorbing and squeezing commands.
	Commit
Input : ⊥
Output: ⊥
Steps :

1. if pos ≠ 0:

. S <- F(S)

a. pos <- 0

Update
The Update function advances the buffer cursor 1 position and commits the spongos state if the cursor reaches <rate>.
	Update
Input : ⊥
Output: ⊥
Steps :

1. pos <- pos + 1

2. if pos = R:

. Commit()

Absorb
The Absorb function processes input data.
	Absorb
Input : X∈{0,1}*

Output: ⊥
Steps :

1. for i=0,...,|X|-1:

. S[pos] <- X[i]

a. Update()

Squeeze
The Squeeze function produces output data.
	Squeeze
Input : n∈ℕ

Output: Y∈{0,1}ⁿ

Steps :

1. Y <- 0ⁿ

2. for i=0,...,n-1:

. Y[i] <- S[pos]

a. Update()

a. return Y

Encrypt
The Encrypt encrypts plaintext. The encryption key must be absorbed and committed beforehand.
	Encrypt
Input : X∈{0,1}*

Output: Y∈{0,1}ⁿ,n=|X|

Steps :

1. Y <- 0ⁿ

2. for i=0,...,|X|-1:

. Y[i] <- X[i] ⊕ S[pos]

a. S[pos] <- Y[i]

b. Update()

a. return Y

Decrypt
The Decrypt function decrypts ciphertext. The encryption key must be absorbed and committed beforehand.
	Decrypt
Input : Y∈{0,1}*

Output: X∈{0,1}ⁿ,n=|Y|

Steps :

1. X <- 0ⁿ

2. for i=0,...,|X|-1:

. X[i] <- Y[i] ⊕ S[pos]

a. S[pos] <- Y[i]

b. Update()

a. return X

Fork
The Fork function is used to duplicate the spongos automaton.
	Fork
Input : ⊥
Output: S’

Steps :

1. S’ <- S

2. return S’

Join
The Join function is used to join two spongos automata.
	Join
Input : S’

Output: Y∈{0,1}ⁿ,n=|X|

Steps :

1. S’.Commit()

2. For i=0;...;R-1:

. S’[i] = 0

a. F(S’)

a. T <- S’.Squeeze(C)

a. Absorb(T)

a. Commit()

10.5.2 Pseudo Random Number Generator (PRNG)
The pseudo-random number generator is constructed using a spongos automaton. The operations for this are described below.
Init
The PRNG Init function initializes the PRNG with a secret key.
	Init
Input : K∈{0,1}C
Output: ⊥
Steps :

1. S.Init()

2. S.Absorb(K)

Gen
The Gen function is used to generate pseudo-random numbers.
	Gen
Input : N∈{0,1}*, n∈ℕ

Output: Y∈{0,1}ⁿ

Steps :

1. Init()

2. S.Absorb(N)

3. S.Commit()

4. Y <- S.Squeeze(n)

5. return Y

10.5.3 Ed25519
Ed25519 is a signature scheme in the EdDSA family (RFC8032) defined over the Curve25519 in Edwards form. The scheme consists of three algorithms: key generation, hash signing and signature verification. Private key is a 256-bit random number. Public key is a 256-bit number deterministically calculated from a private key.

10.5.4 X25519
X25519 is a Diffie-Hellman key exchange algorithm (RFC7748) defined over the Curve25519 in Montgomery form.

10.6 The Data Description and Modification Language (DDML)
The DDML component of the Sponge-based PIM covers two aspects:

· Types

· Commands

The definitions of types deal with both signed and unsigned textual datatypes and arrays of varying lengths as well as a set of ‘modifiers’ or complex types that deal with matters specific to a given Local Protocol.

DDML is intended for use with the sponge-based PIM but is described separately here to enable re-use in other contexts.

10.6.1 DDML Description

The LETS Data Description and Modification Language (DDML) is a message description language that has been designed for both data serialization and cryptographic functionality. A message is composed of individual fields and a field is defined by its type and command. A field type describes how data should be encoded, while a field command describes how data should be processed by the Spongos Automaton.

DDML exposes 3 operations: “Wrap”, “Unwrap”, and “SizeOf”.

The “Wrap” operation takes a Spongos state, an application context (keys, RNGs, auxiliary data) and the payload data and produces a binary encoded message, as well as the Spongos state resulting from the interaction with the Spongos Automaton during the processing of the data.
The “Unwrap” operation takes a Spongos state, an application context (keys, auxiliary data) and a binary encoded message and produces the payload data and the resulting Spongos state.
The “SizeOf” operation produces the size of the binary buffer needed to encode the message, and should be used to define the space necessary for a “Wrap” operation.

The resulting Spongos state after a “Wrap” and “Unwrap” operation will only be equal if the initial Spongos state and corresponding keys used to process a message are also equal. These Spongos states are required by all users to be synchronised. Messages built from malformed sponges states are not processed, as the message identifiers will not match the defined pattern, and the states may not contain the correct session keys/nonces necessary for participant processing.

10.6.2 DDML Syntax

10.6.2.1 Types
	u8
	Unsigned 8-bit integer

	u16
	Unsigned 16-bit integer

	u32
	Unsigned 32-bit integer

	u64
	Unsigned 64-bit integer

	uint
	Unsigned variable length integer

	T[n]
	Fixed-sized array of values of type T of length n

10.6.2.2 Modifiers
	oneof
	Construct a choice type

	repeated
	Repeat a command or group of commands once for each item in an array

	external
	Execute only the field command to produce a new Spongos State without de/serializing it from/to the binary message. When deserializing, the field is provided from the program context

	fork
	Fork the Spongos Automaton and execute the rest of the commands in scope against the fork. Once the scope ends, the original Spongos Automaton is recovered

	join
	Join the current Spongos Automaton with another Spongos State given as argument

	commit
	Force a commit of the Spongos State

	guard
	Ensure input condition is met

10.6.3 DDML Commands

The DDML Commands are detailed in Table 10.1.
Table 10.1: DDML Commands

	Command
	Wrap Context
	Unwrap Context
	SizeOf Context

	absorb
	Absorb field into the Spongos Automaton and serialize it into the message
	Deserialize field from the message and absorb it into the Spongos Automaton
	Add field type size to the accumulated buffer size

	ed25519
	Compute ed25519 signature of a hash field specified as argument and serialize it into the message
	Deserialize signature from the message and verify it against a hash field specified as argument
	Add ed25519 Signature Size to the accumulated buffer size

	mask
	Encrypt the field with the Spongos Automaton and serialize the resulting ciphertext into the message
	Deserialize field from the message and decrypt it with the Spongos Automaton
	Add field ciphertext size to the accumulated buffer size

	skip
	Serialize the field into the message without processing it (skipping the Spongos Automaton)

	Deserialize the field out of the message without processing it (skipping the Spongos Automaton)
	Add field type size to the accumulated buffer size

	squeeze
	Squeeze the necessary data out of the Spongos State to fill a field and serialize it into the message
	Deserialize the field from the message, squeeze the amount of data necessary to fill the field type out of the Spongos State, and validate they are equal
	Add field type size to the accumulated buffer size

	x25519
	Generate an ephemeral x25519 key pair; Absorb the public key into the Spongos Automaton and serialize it into the message; generate a shared secret by performing a Diffie-Hellman exchange with the ephemeral secret encryption key and the deserializer’s static public key; Absorb the shared secret into the Spongos Automaton
	Deserialize the serializer’s ephemeral public key from the message; Absorb the ephemeral public key into the Spongos Automaton; generate a shared secret by performing a Diffie-Hellman exchange with the ephemeral public key and the own static private key; Absorb the shared secret into the Spongos Automaton
	Add public key to the accumulated buffer size

10.7 Message Preparation

A “Message” within the context of the Sponge-based PIM denotes a uniformly prepared structure of data that can assume any number of responsibilities from a higher level. For the framework, a message itself is constructed using a pre-designated Header space, and an accompanying content structure for placing the sender's data into. The Header Descriptor Frame is the frame at the beginning of a message used for indicating the version of streams that is being used, a message identifier for the message preceding the current one, and a type indicator for the message that is being sent. During message generation, the header is always created first, and placed before the Payload Carrying Frames being sent. The content section itself can assume many forms depending on the operations intended to be conducted on the application layer.

	message Message {
 Header header;
 Content content;
 commit;
}
message Header {
 absorb u8 version;
 absorb external link address;
 absorb u8 content_type;
}
message Content; // app-specific
// Example message
message MyAppContent {
 absorb u8 nonce[16];
 absorb u8 key[32];
 commit;
 mask bytes payload;
 commit;
 ed25519 u8 sig[64];
}

10.8 Message Transportation

The Sponge-based PIM is transportation agnostic. It only requires a variable amount of data to be read or sent at a location. Data will be read according to the specifications of the version this data was created with. The version can be read from the header description frame.
	Interface for a transport layer
Send_Message(Link, Message, Send_Options)
Receive_Message(Link, Recv_Options): Message

10.8.1 Packetization and Framing
Message payloads must be broken down into even portions to be packetized. All of the metrics for the derived packets, along with application level information, are stored in the Header Descriptor Frame (HDF) which is the first frame sent/received when processing a message. The Payload Carrying Frames (PCFs) are the subsequently linked messages containing payload data along with pertinent custom application data.

Both HDF and PCF currently have unused bits marked in black. These areas are kept in the case of a future version requiring more space. When a bit is unused it should be set to zero.

10.8.1.1 Header Descriptor Frame (HDF)
The Header Descriptor Frame of a message contains important application processing information regarding the proceeding payload frames. This includes the protocol version, message type and encoding type of the content that is being packetized along with custom application data needed for message processing. The Uniform Payload Length has a minimum requirement to be 1 byte, and a maximum available space defined with reference to the underlying transportation scheme.

For example this is set to 32,692 bytes per fragment if the IOTA Tangle is selected as the underlying transport in a given Local Protocol, this being the maximum available space in a Tangle Message. In other transportation schemes (especially within IoT related frameworks) it is possible for this payload length to be reduced for processing on both ends.

Among the remaining contents of the HDF are the frame type identifier, which indicates that this frame is an HDF, as well as a counter for the number of proceeding frames. Frame count maxes out at 216, meaning a message with Uniform Payload length of ~32 KiB can be used to send a maximum message size of ~2Gb. Any dataset larger than this will need to be fragmented into separate messages.

[image: image4.png]Header Description Frame (HDF) Packetization Structure

Byte 3 Byte 2
Bit 31 [Bit 30|Bit 29 | Bit 28 | Bit 27 | Bit 26 | Bit 25 | Bit 24 | Bit 23 | Bit 22 | Bit 21 | Bit 20 | Bit 19| Bit 18| Bit 17 | Bit 16 | Bit 15Bit 14 |Bit 13|Bit 12|Bit 11|Bit 10| Bit9 | Bit8

Bits 31 - 24: Encoding Type Bits 23 - 16: Version Number Bits 15 - 0: Uniform Payload Length
Maximum value 32 692, Minimun value 1

Bits 31 - 24: Frame Type Identifier Bits 23 - 20:

2o M aroe Bits 15 - 0: Payload Carrying Frame Number

Figure 10.4: HDF Required Fields
10.8.1.2 Encoding Type Field
The Encoding Type Field is used to indicate the type of encoding the message is being transmitted in. See Table 10.2.
Table 10.2: Encoding Type Values
	Register Value
	Message Type

	0x00
	UTF8

	0x01
	Raw Binary

	0x02
	Unicode

	Other Values
	User Defined Encoding Types

10.8.1.3 Version Number Field
The Version Number Field is used to define which version of the Local Protocol has been used to publish the message. This register is also used to derive what type of receiving end processing will be needed based on the differences between IOTA Streams versions.

10.8.1.4 Message Type Field
The Message Type Field is used to indicate one of the message types in a LETS implementation. The field has 4 bits (with a maximum extendable size of 1 byte) available for customisation when defining the Local Protocol, allowing for up to 255 custom message types.

10.8.1.5 Uniform Payload Length Field
The Payload Length Field contains the length each Payload Carrying Frame carries in bytes. The maximum value efined as part of the Local Protocol, depending on underlying transport protocol or DLT parameters.

For example in a LETS Local Protocol for use on the IOTA Tangle this maximum is 32,692 bytes and the minimum value is 1 byte.

10.8.1.6 Frame Type Identifier Field
The Frame Type Identifier Field is used to indicate what type of frame is being processed. See Table 10.3.
Table 10.3: Frame Type Identifier Values
	Register Value
	Message Type

	0x04
	Header Descriptor Frame

	0x05
	First Payload Carrying Frame

	0x0C
	Intermediary Payload Carry Frame

	0x0E
	Final Payload Carrying Frame

	Other Values
	User Defined Frame Types

10.8.1.7 Payload Carrying Frame Count Field
The Payload Carrying Frame Count Field contains the total number of payload carrying frames expected in the message.

10.8.1.8 Payload Carrying Frame (PCF)
A Payload Carrying frame is the part of a message that contains application specific data. The frame type identifier and current PCF number must be Included in a PCF. The PCF number will allow for ordering and organising of message fragments, while the frame type identifier will indicate if the active PCF is an initial, intermediate or final payload frame.

The payload fragment is placed into the Payload Data Bytes field, conforming to the size constraints issued in the HDF Uniform Payload Length. This means that the Payload does not have to be 8184 words long and can be truncated for resource preservation.

[image: image5.png]Payload Carrying Frame (PCF) Packetization Structure

Byte 2 Byte 1 Byte 0
8it 31 [Bit 30|Bit 29| Bit 28 [Bit 27| Bit 26 | Bit 25 Bit 24 [Bit 23| Bit 22| Bit 21 [Bit 20 [Bit 19| Bit 18] Bit 17[Bit 16 [Bit 15|BIt 14]Bit 13[Bit 12|Bit 11|BIt 10| Bito [Bits | Bit7 | Bite [Bits |Bita |Bita |6tz [Bit1|sit0

Bits 31 - 24: Frame Type Identifier

0x05 Initial PCF (PCF 0) Bits 15 - 0: Payload Carrying Frame Number
00C Intermidiary PCF
OxOE Final PCF.

Payload Data Bytes 0: 3
Little Endian with Max Payload size of 32 692 bytes, Minimum Payload Size of 1

Payload Data Bytes 4: 7

Payload Data Bytes 32, 688 : 32, 691

Figure 10.5: PCF Required Fields
10.8.1.9 Frame Type Identifier Field
The Frame Type Identifier Field is used to signal what type of frame is being processed. For the Payload Carrying Frames there are three possible values used to indicate initial, intermediary, and final Payload Carrying Frames. See Table 10.4.
Table 10.4: Frame Type Identifier Values
	Field Value
	Message Type

	0x05
	First Payload Carrying Frame

	0x0C
	Intermediary Payload Carry Frame

	0x0E
	Final Payload Carrying Frame

10.8.1.10 Payload Carrying Frame Number Field
The Payload Carrying Frame Number Field contains the current Payload Carrying Frame number that is being processed.

10.8.1.11 Payload Data Field
The Payload Data Field is the field in which the actual payload data is placed little endian, in 32-bit words.

11 Injected Checksum-based PIM

A further conformant application is exemplified by the Freighter application from [SKALY], which achieves the same overall result while following a different implementation path. The Freighter logical arrangement is defined as a separate PIM conformant with the CIM defined in Clause 8 of this specification. This PIM meets the same CIM conformance points as the Sponge-based PIM (clause 10) but in different ways.
Local Profiles may be developed as physical implementations of this logical PIM, and shall conform with the requirements common to all PIMs as defined in Clause 9 as well as with the requirements in this Clause 11.
[To come in later updates: Description and logical specification of the SKALY Freighter framework]

