
Distributed Immutable Data Object
Command Line Interface

DIDO-CLI

R. W. “Nick” Stavros
Bryan A. Turek
Ian T. Stavros

Jackrabbit Consulting, Inc.
30 January 2020

What is DIDO (Distributed Immutable Data Object)?

●

●
●

●

●
●

Page: 2

Why not Blockchain or Distributed Ledger Technologies?

●
●

●

●

Page: 3

What are DIDO Platforms

●

●

Page: 4

https://bridgera.com/what-is-a-software-platform/

What is a Command Line Interface (CLI)

●

●

Page: 5

https://www.techopedia.com/definition/3337/command-line-interface-cli

What is an Application Programming Interface (API)?

Page: 6

What is Data Definition Language (DDL)

Page: 7

What is Data Manipulation Language (DML)

Page: 8

Setting the Stage (1 of 2)

● Why are DBMSs, DDL and DML important in the context of DIDOs?

Because the evolutionary path these current datastore products is
analogous to the evolution of DIDOs and should be considered a
roadmap of where to go

● What is the difference between a DBMS and a Datastore?

A datastore is a repository for persistently storing and managing
collections of data which include not just repositories like databases,
but also simpler store types such as simple files, emails etc.

Page: 9

Setting the Stage (2 of 2)

● What is the difference between a DBMS and a Datastore?

A datastore is a repository for persistently storing and managing
collections of data which include not just repositories like databases,
but also simpler store types such as simple files, emails etc.
http://www.information-management.com/glossary/d.html

● Does this mean DIDOs support Update operations?

Yes and No! They support updates through a transaction based
“Ledger” … they are Immutable!

Page: 10

http://www.information-management.com/glossary/d.html

Typical Mature Database “stack” (1 of 5)

● The term “stack” is in quotes
because there is not a single
path. The blocks are more like
components and they are
“glued” together depending on
the context

● At the heart of the DBMS is the
Datastore, not dissimilar to
DIDOs

Page: 11

Typical Mature Database “stack” (2 of 5)

● Applications are generally built upon
Open Database Connectivity “Layer”
● With specific driver to access a

specific database
○ Using standardized SQL API
○ DB Specific API

Page: 12

Typical Mature Database “stack” (3 of 5)

● A typical DBMS provides many
APIs

○ Database Configuration
○ Data Definition
○ Data Manipulation
○ Custom DBMS API
○ SQL Command Line

Interpreter
● Which one are we going to build

or standardize first?

Page: 13

Typical Mature Database “stack” (4 of 5)

● Most modern Applications formulate
SQL statements as strings to access
the DBMS

● The SQL strings are passed through
an Open Data Connectivity API (i.e.,
ODBC)

Page: 14

Typical Mature Database “stack” (5 of 5)
● The ODBC either passes the SQL

Strings to the DBMS SQL CLI or
through DBMS Drivers written
specifically for the DBMS

● DBMS Drivers either send
commands to the SQL CLI Interpreter
or they call DBMS specific APIs

● Results are SQLSTATES (i.e., return
codes), Text, or Results Sets

Page: 15

Using the DBMS Evolution as a Roadmap for DIDOs

● The components of the DBMS APIs should map nicely to those required
by DIDOs

○ Configuration
○ Definition
○ Manipulation

● Providing a vendor-neutral Command Line Interface (CLI) will abstract
the details of a DIDO imnplementation from the end users (who are the
end users?)

Page: 16

DIDO Configuration

Issue:

DIDO’s run on distributed computers owned by many people or
organizations, each one has a varying amount of Information
Technology (IT) support and a unique configuration

Problem:

There are no assurances as to the state of the machines (including
security) that the DIDO run on or even how the DIDO is installed on the
machine

Page: 17

Containerization and Virtual Machines

Solution:

Using Containers or Virtual Machines (VMs) to deploy multiple, isolated
services on a single platform.

What’s the difference?
● The Container’s system requires an underlying operating system providing basic services to

the containerized applications using virtual-memory for isolation.
● A VM uses a hypervisor with its own operating system (OS) and using hardware virtualization
● Containers have lower overhead typically targeting environments with constrained resources
● Containers are usually isolated from other containers and have limited resource access. i.e.,

file systems or network support

Page: 18

DIDO Configuration Definition Language (DCDL)

● Containers and VMs have well defined, formal configuration definitions
● Create a DIDO CLI named Configuration Definition Language (DCDL)
● Considering some basic DIDO objects

○ Ports
○ Machine/Container resources
○ Disk Access
○ Service Images
○ Executable Images
○ DIDO configurations

● Considering some basic DIDO operations
○ Install / Download / Remove
○ Start / Stop / Pause / Resume
○ Synchronize
○ Dump Trace
○ Show

○ Objects
○ Wallets
○ Exchanges
○ Oracles
○ Aggregates

Page: 19

DCDL PORTS, RESOURCES, VOLUMES Examples (1 of 4)
DEFINE PORT http AS
 protocol = TCP,
 port = 8080;

DEFINE PORT discovery AS
 protocol = UDP,
 port = 30301;

DEFINE MACHINE_RESOURCE avaerageMachine AS
 Memory = 64mi, MaxMemory = 100mi,
 CPU = 100m, MaxCPU = 110m;

DEFINE VOLUME config AS
 path = "/etc/myDidoRoot/config";
DEFINE VOLUME data AS
 path = "/etc/myDidoRoot/data";
DEFINE VOLUME download AS
 path = "/etc/myDidoRoot/download";
DEFINE VOLUME wallet AS
 path = "~/myWallet/";
DEFINE VOLUME wallet AS
 path = "~/universityWallet/";

-- Note: There is only one wallet VOLUME,
-- It can point to different locations

Page: 20

DCDL SERVICES, EXECUTABLES Examples (1 of 4)
DEFINE SERVICE PeerDiscovery AS
 image = PeerDiscovery
 command = ["/bin/sh", "-c"]
 arguments = "set -e -x; while true; do python “
 “/etc/peer_discovery.py; "
 "sleep 15; done";

DEFINE SERVICE fullNode AS
 image = fullNode
 command = ["/bin/sh", "-c"]
 arguments = "set -e -x; while true; do python “
 “/etc/full_node.py; "
 "sleep 15; done"

DEFINE EXECUTABLE todaysWeather AS
 image = weather
 command = ["/bin/sh", "-c"]
 arguments = "set -e -x; while true; do python “
 “/etc/weather.py; "
 "sleep 15; done"

Page: 21

DCDL DIDO Examples (2 of 4)
DEFINE DIDO MyDido
 USING
 port = [http, discovery],
 machine_resource = avaerageMachine,
 volume = [config, data],
 service = [peerDiscovery, fullNode],
 execute = [todaysWeather];

DEFINE DIDO YourDido
 USING
 port = [http,discovery],
 machine_resource = avaerageMachine,
 volume = [config, data],
 container = [peerDiscovery, fullNode];

DEFINE DIDO OurDido
 USING
 Port = [http,discovery],
 machine_resource = avaerageMachine,
 volume = [config, data],
 Container = [peerDiscovery, fullNode];

DEFINE DIDO UniDido
 USING
 port = [http, discovery],
 machine_resource = avaerageMachine,
 volume = [config, data],
 service = [peerDiscovery, fullNode],
 execute = [getTodayWeather];

DEFINE DIDO CourseListing
 USING
 port = [http, discovery],
 machine_resource = avaerageMachine,
 volume = [config, data],
 service = [peerDiscovery, fullNode],
 execute = [getTodayWeather];

DEFINE DIDO Grades
 USING
 port = [http, discovery],
 machine_resource = avaerageMachine,
 volume = [config, data],
 service = [peerDiscovery, fullNode],
 execute = [getTodayWeather];

Page: 22

DCDL DIDO Operation Examples (3 of 4)
DOWNLOAD DIDO MyDido
 FROM 'https://university.edu/studentDido/download/'
 ON node = ‘2001:0db8:85a3:0000:0000:8a2e:0370:7334’;
INSTALL DIDO MyDido
 ON node = ‘2001:0db8:85a3:0000:0000:8a2e:0370:7334’;
START DIDO MyDido
 ON node = ‘2001:0db8:85a3:0000:0000:8a2e:0370:7334’;
PAUSE DIDO MyDido
 ON node = ‘2001:0db8:85a3:0000:0000:8a2e:0370:7334’;
DUMP TRACE DIDO MyDido
 ON node = ‘2001:0db8:85a3:0000:0000:8a2e:0370:7334’;
RESUME DIDO MyDido
 ON node = ‘2001:0db8:85a3:0000:0000:8a2e:0370:7334’;
REMOVE DIDO MyDido
 ON node = ‘2001:0db8:85a3:0000:0000:8a2e:0370:7334’;

-- Note: the IP Address ‘2001:0db8:85a3:0000:0000:8a2e:0370:7334’
-- can be replaced by localhost
-- For example:
DOWNLOAD DIDO MyDido
 FROM 'https://university.edu/studentDido/download/'
 ON node = localhost

Page: 23

https://university.edu/studentDido/download/

DCDL DIDO Operation Examples (1 of 4)
START DIDO MyDido
 ON node = '2001:0db8:85a3:0000:0000:8a2e:0370:7334';
START DIDO YourDido
 ON node = '2001:0db8:85a3:0000:0000:8a2e:0370:7335';
START DIDO OurDido
 ON node = '2001:0db8:85a3:0000:0000:8a2e:0370:7336';
START DIDO UniDido
 ON node = '2001:0db8:85a3:0000:0000:8a2e:0370:7337';
START DIDO CourseListing
 ON node = '2001:0db8:85a3:0000:0000:8a2e:0370:7338';
START DIDO Grades
 ON node = '2001:0db8:85a3:0000:0000:8a2e:0370:7339”;

-- Note: Using containers, all these could be started on the same node.

Page: 24

DCDL SHOW Operation Examples (1 of 4)
SHOW PORT *;
SHOW PORT http;
SHOW SERVICE *;
SHOW SERVICE fullNode;
SHOW EXECUTE getTodayWeather;
SHOW DIDO *;
SHOW DIDO MyDido;

Page: 25

DIDO Data Definition Language (DDDL) (1 of 6)

● Create a DIDO CLI named Data Definition Language (DDDL)
● Considering some basic DIDO objects

○ Objects
○ Wallets
○ Exchanges
○ Oracles

■ Between DIDOs
■ External

○ Aggregates
● Considering some basic DIDO operations

○ Create
○ Alter - a form of Aggregate between the original object and the new object
○ Delete - it is not possible to delete DIDO objects, they can only be marked as deleted or

deprecated

Page: 26

DDDL Object Examples (2 of 6)
CREATE OBJECT MyDido.Student AS
 (StudentId : Hash NOT NULL KEY,
 FirstName : Text NOT NULL,
 LastName : Text NOT NULL
);
CREATE OBJECT OurDido.StudentAccount AS
 (AccountId : Hash NOT NULL KEY,
 StudentId : Hash NOT NULL,
 Balance : Fixed(3.2), DEFAULT 0.0, MINIMUM 0.00,
 MAXIMUM 10000.00, TOKEN
);
CREATE OBJECT OurDido.DinningHallAccount AS
 (AccountId : Hash NOT NULL KEY,
 StudentId : Hash NOT NULL,
 Balance : Fixed(3.2), DEFAULT 0.0, MINIMUM 0.00,
 MAXIMUM 500.00, TOKEN
);

CREATE OBJECT CourseListing.Course AS
 (CourseId : Hash NOT NULL KEY,
 Department : Text NOT NULL,
 Title : Text NOT NULL,
 CourseNumber : Text NOT NULL,
 Credits : Integer
);

CREATE OBJECT CourseListing.Post AS
 (PostId : Hash NOT NULL KEY,
 CourseId : Hash NOT NULL,
 StudentId : Hash NOT NULL,
 Grade : Enum,
 DEFAULT {0,’Audit’},
 VALUES {{0,'Audit'},
 {1,'Fail'},
 {2,'Unsatisfactory'},
 {3,'Fair'}
 {4,'Good'}
 {5,'Excellent'},
 }
);Page: 27

DDDL Exchange Examples (3 of 6)
CREATE EXCHANGE UniDido.TopOffDining
 (FromAccount Hash,
 ToAccount Hash,
 AmountToTransfer Fixed
) AS
 FROM OurDido.StudentAccount
 TO OurDido.DinningHallAccount
 (AccountsID : Hash;
 StudentId : FETCH genesis KEY
 FROM OurDido.StudentAccount STUDENT_ACCT
 WHERE STUDENT_ACCT.AccountId
 = $FromAccount.;
 AccountId : SELECT genesis KEY
 FROM OurDido.DinningHallAccount DINING_ACCT
 WHERE DINING_ACCT.AccountId
 = $ToAccount.;
)
 AS TRANSACTION -- Start Transaction
 (TRANSFER FROM StudentId::current KEY
 TO OurDido.DinningHallAccount
 AMOUNT $AmountToTransfer.
 TIMEOUT = 10*60000 --- 10 minutes

WHEN SUCCESS
 THEN POST INFORMATION
 TO Log, Notify
 OBJECTS OurDido.StudentAccount,
 OurDido.DinningHallAccount
 TEXT = 'The amount of $AmountToTransfer. '
 'Successful '
 'between $FromDido. and $toDido.'
WHEN FAILURE
 THEN POST WARNING
 TO log, Notify, Alert,
 OBJECTS OurDido.StudentAccount,
 OurDido.DinningHallAccount,
 OurDido.Administrator
 TEXT = 'The amuount of $AmountToTransfer. '
 'failure '
 'between $FromDido. and $toDido.'
); -- End Transaction

Page: 28

DDDL DIDO to DIDO Oracle Example (4 of 6)
CREATE ORACLE OurDido.StudentStatement
 FROM OurDido.StudentAccount,
 MyDido.Student
 (StudentStatementId : Hash KEY,
 StudentId : Hash,
 AccountId : Hash
)
 AS
 (NEW KEY,
 FETCH current KEY
 FROM MyDido.Student
 WHERE MyDido.Student = STUDENT.$1.,
 FETCH current KEY
 FROM OurDido.StudentAccount
 WHERE OurDido.StudentAccount = ACCOUNT.$2.
);

-- Note: The Student Statement uses positional
-- parameter notation (i.e., first $1. and second $2.)
-- rather than named notation (i.e., StudentId
-- and AccountId). To use named parameters,
-- add a parenthetical list after the CREATE
-- statement. For Example:
-- CREATE oracle OurDido.StudentStatement
-- (StudentId hash, AccountId hash)

-- Note: In this example, the structure of the ORACLE
-- object is laid out first, then the values for those
-- columns are associated with the column names
-- using a position.

Page: 29

DDDL RESTful to DIDO Oracle Example (5 of 6)
CREATE ORACLE MyDido.StudentForecast
 FROM MyDido.todaysWeather,
 MyDido.Student
 (StudentForecastId : Hash,
 StudentId : Hash
 = FETCH current KEY
 FROM MyDido.Student STUDENT
 WHERE STUDENT.StudentId = $1.,
 Forecast : Hash
 = SELECT FORMAT JSON ATTR *
 FROM MyDido.todaysWeather WEATHER
 WHERE WEATHER.Location = $2.
);

-- NOTE: Forecast is a JSON string that contains
-- the forecast for the student at the specified
-- location.
-- MyDido.todaysWeather is an EXECUTABLE
-- defined previously

-- Note: In this example, the structure of the ORACLE
-- object is made and the values for those
-- columns are associated with the column names
-- at the same time..

Page: 30

DDDL AGGREGATE Example (6 of 6)
CREATE AGGREGATE Grades.ReportCard
 FROM CourseListing.Post POSTING
 WHERE POSTING.StudentId = ‘$1.'
RECORD POSTING current ATTR * AS parents,
 Grades.ReportCard current ATTR * AS process;

-- Note: In an AGGREGATE, in order to provide
-- pedigree, the parents of the new aggregate and
-- the process that generated the aggregate need
-- to be recoded.

Page: 31

DIDO Data Manipulation Language (DDML) (1 of 8)

● Create a DIDO CLI named Data Manipulation
Language (DDDL)

● Considering some basic DIDO objects
○ Objects
○ Wallets
○ Exchanges
○ Oracles
○ Aggregates

● Considering some basic DIDO operations
○ Select
○ Store
○ Invoke

○ Fetch
○ Refresh
○ Show

Page: 32

DDML FETCH Example (2 of 8)
-- To get the current StudentStatment
-- call the 'oracle' with the
-- positional parameters
 FETCH current KEY
 FROM OurDido.StudentStatement '12FFCD34..'
 '67DEAD34..'
-- To get the current StudentStatment
-- call the 'oracle' with the named
-- positional parameters

FETCH current KEY
 FROM OurDido.StudentStatement
 2='67DEAD34..'
 1='12FFCD34..'

-- To get the current StudentStatment call
-- the 'oracle' with the named
-- parameters
-- Change
-- from: ORACLE OurDido.StudentStatement
-- to: ORACLE OurDido.StudentStatement
 (StudentId, AccountId);
-- Change
-- from: $1. to $StudentId.
-- from: $2. to $AccountId.

Page: 33

DDML FETCH examples (3 of 8)
-- GENESIS - Returns the KEY of first record in the history.
-- Note: The first record could be an AGGREGATE which means it is composed
-- one or more parents. Each parent has a genesis record of its own
 FETCH genesis KEY FROM MyDido.Student WHERE StudentId = '12FFCD34..';

-- PREVIOUS - Returns the KEY of the later record in time. If at the current key,
-- the current key is returned
 FETCH previous KEY FROM MyDido.Student WHERE StudentId = '12FFCD34..';

-- NEXT - Returns the KEY of the earlier record in time. If at the genesis key,
-- the genesis key is returned
 FETCH next KEY FROM MyDido.Student WHERE StudentId = '12FFCD34..';

-- CURRENT - Returns the KEY of the most current record. If at the current key,
-- the current key is returned
 FETCH current KEY FROM MyDido.Student WHERE StudentId = '12FFCD34..';

-- HISTORY - Returns the set of KEYs in chronological order from the present location
-- key to the genesis. The history does not go back beyond the genesis entry
-- to include the parents if the object was an AGGREGATE
 FETCH history KEY FROM MyDido.Student WHERE StudentId = '12FFCD34..';

Page: 34

DDML Initiate Example (4 of 8)
INITIATE MyDido.Student
 (FirstName = 'Robert',
 LastName = 'Stavros'
);
SINITIATE OurDido.StudentAccount
 (StudentId = '12FFCD34..',
 Balance = 500.00
);
INITIATE OurDido.DinningHallAccount
 (StudentId = '12FFCD34..',
 Balance = 0.00
);

-- Initiate creates a genesis record and
-- returns a key pair of a public and private
-- key.
--
-- This needs to be put into a Wallet or
-- into another DIDO object.

Page: 35

DDML Wallet Examples (5 of 8)
STORE INTO WALLET RobertsWallet
 Name = 'MyDido.Student'
 KeyPair = INITIATE MyDido.Student
 (FirstName = 'Robert',
 LastName = 'Stavros'
);
STORE INTO wallet:RobertsWallet
 Name = 'OurDido.StudentAccount'
 KeyPair = INITIATE OurDido.StudentAccount
 (StudentId = '12FFCD34..',
 Balance = 500.00
);
STORE INTO wallet:RobertsWallet
 Name = 'OurDido.DinningHallAccount'
 KeyPair = INITIATE OurDido.DinningHallAccount
 (StudentId = '12FFCD34..',
 Balance = 0.00
);

Page: 36

DDML INVOKE, REFRESH and STORE Examples (6 of 8)
INVOKE EXCHANGE UniDido.TopOffDining
 (FromAccount ='12FFCD34..',
 ToAccount ='67DEAD34..',
 AmountToTransfer = 25
);
REFRESH wallet:RobertsWallet;

STORE INTO universityWallet:CourseListingWallet
 Name = 'CourseListing.Post',
 KeyPair = INITIATE CourseListing.Course
 (CourseId = '66DDEEAADD..',
 StudentId = '12FFCD34..',
 Grade = 'A'
);
STORE INTO universityWallet:CourseListingWallet
 Name = 'CourseListing.Post'
 KeyPair = INITIATE CourseListing.Course
 (CourseId = '77DFEEAADD..',
 StudentId = '12FFCD34..',
 Grade = 'C'
);

Page: 37

DDML STORE Examples (7 of 8)
STORE INTO universityWallet:CourseListingWallet
 Name = 'CourseListing.Post'
 KeyPair = INITIATE CourseListing.Course
 (CourseId = '66DDEEAADD..',
 StudentId = '12FFCD34..',
 Grade = 'A'
);

STORE INTO universityWallet:CourseListingWallet
 Name = 'CourseListing.Post'
 KeyPair = INITIATE CourseListing.Course
 (CourseId = '77DFEEAADD..',
 StudentId = '12FFCD34..',
 Grade = 'C'
);

Page: 38

DDML STORE Examples (8 of 8)
STORE INTO universityWallet:CourseListingWallet
 Name = 'CourseListing.Course'
 KeyPair = Initiate CourseListing.Course
 (Department = 'Computer Science',
 Title = 'Introduction',
 CourseNumber = 'CS-101'
 Credits = 3
);

-- '54DFEEAADD..'
STORE INTO universityWallet:CourseListingWallet
 Name = 'CourseListing.Course'
 KeyPair = INITIATE CourseListing.Course
 (Department = 'English',
 Title = 'English Literature',
 CourseNumber = 'EN-101'
 Credits = 3
);

-- '77DFEEAADD..'

STORE INTO universityWallet:CourseListingWallet
 Name = 'CourseListing.Course'
 KeyPair = Initiate CourseListing.Course
 (Department = 'Computer Science',
 Title = 'Text Information Systems',
 CourseNumber = 'CS-410'
 Credits = 3
);
 -- '66DDEEAADD..'

Page: 39

DIDO - CLI Conclusions

● It is not enough to provide a single APIs for DIDOs
○ Database Configuration
○ Data Definition
○ Data Manipulation
○ Custom DBMS API
○ Command Line Interpreter (CLI)

● Three different DIDO CLI are possible
○ DIDO Configuration Definition Language (DCDL)
○ DIDO Data Definition Language (DDDL)
○ DIDO Data Manipulation Language (DDML)

● CLI examples are not finalized and are not syntactically or semantically
rigourous but provided as proof of concepts

Page: 40

DIDO CLI - Next Steps

● Work with a DIDO Platform vendor such as IOTA to refine the underlying
CLI Data Model

● Submit the CLI Data Model for standardization
● Work with software language specialists to define a formal syntactically

and semantically rigourous DDCL, DDDL and a DDML language
● Submit DDCL, DDDL and DDML CLIs for standardization
● Provide an Open Source Parser for the DIDO CLI that populates the CLI

Data Model
● Provide a DDCL, DDDL and DDML Container for deployment on DIDO

Nodes

Page: 41

