
2022/08/09 13:01 1/10 2.3.4.8.4.6 Pure Methods

DIDO Wiki - https://www.omgwiki.org/dido/

2.3.4.8.4.6 Pure Methods

Return to Operation Data

Overview

Return to Top

Pure methods are limited to are often referred to as Pure Functions. Pure Functions are a cornerstone
in Functional Programming and are designed to produce no Side Effects. Pure Functions are
characterized as follows1):

Are dependent only on
Declared input parameters
Algorithm to be implemented
Values within the scope of the function, therefore, it can not

Depend on accessing any values defined outside the function scope (i.e., another field
in the same class, or global variables)
Modify mutable values outside the function scope (i.e., other fields in the same class,
or global variables)
Use external input or output (I/O). It can’t rely on input from files, databases, web
services, UIs, etc; it can’t produce output, such as writing to a file, database, or web
service, writing to a screen, etc.

Do not modify input parameters2.

Figure 1 provides a graphic representing a Pure Function. Basically, the Pure FUnction is
an isolated piece of logic that given the same input always produces the same output. Its
isolation means it has no unintended side effects outside of itself and only the inputs
determine the processing. Another way to think of a Pure Function is at their center there is
a Deterministic Algorithm (Also see Black Box Testing).

https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:1.2_views:3_taxonomic:4_data_tax:08_objects:07_opers:start
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:p:pure_function
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:f:functionalprogramming
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:s:side_effect
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:d:deterministic_algorithm
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:b:blackboxtesting

Last
update:
2022/05/27
19:36

dido:public:ra:1.2_views:3_taxonomic:4_data_tax:08_objects:07_opers:09_general https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:1.2_views:3_taxonomic:4_data_tax:08_objects:07_opers:09_general

https://www.omgwiki.org/dido/ Printed on 2022/08/09 13:01

Figure 1: Pure functions

In some languages (i.e., C, C++, Rust, PHP, JavaScript/ECMAScript), it is possible to have
methods (i.e., procedures or functions) existing outside the class container. Java and C#
require operations to exist within a class container, and therefore do not support General
Methods. C++ does not recommend having General Methods outside of a class, but
because C++ is more or less an extension of C, it does support them.

Often, the architecture and design of Functional Programs depends on the identification,
design and creation of pluggable, reusable functions. Many of the frameworks used in
modern applications reaching across many tiers rely heavily on stateless, client-server
Representational State Transfer (REST) models and Command Line Interfaces (CLIs) .

Figure 2 graphically represents pure functions used in a Functional Program.

The pure functions used in the Functional Program are identified (See items A, B,
and C)
The functions are from a reuse repository (i.e., library), or they can be created
especially for the new Functional Program
The Functional Program is responsible for the lifecycle of each data element (i.e.,
State Variables)
The order of the functions is established in the Functional Program
The association is made of the functions with appropriate the State Variables
(which are Input Data and which are Output Data)
The Functional Program is executed:

The Functional Program is started1.
Calls are made to the functions in the desired order (i.e., steps 2-4) and the2.
State Variable values are passed into or out of the functions
The Functional Program is terminated3.

https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:f:functionalprogramming
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:r:rest
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:c:cli

2022/08/09 13:01 3/10 2.3.4.8.4.6 Pure Methods

DIDO Wiki - https://www.omgwiki.org/dido/

Figure 2: The use of pure Functions in a Functional Program

DIDO Specifics

Return to Top

Ethereum's Solidity is an Object-Oriented Programming (OOP) supporting four closely
related object container types (Java and C++ have just one class):

contract

Contracts, in Solidity, are similar to classes in object-oriented languages. They contain persistent data in
state variables and functions that can modify these variables. Calling a function on a different contract
(instance) will perform an EVM function call and thus switch the context such that state variables in the
calling contract are inaccessible. A contract and its functions need to be called for anything to happen. There
is no “cron” concept in Ethereum to call a function at a particular event automatically.

https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:e:ethereum
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:s:solidity
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:o:oop

Last
update:
2022/05/27
19:36

dido:public:ra:1.2_views:3_taxonomic:4_data_tax:08_objects:07_opers:09_general https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:1.2_views:3_taxonomic:4_data_tax:08_objects:07_opers:09_general

https://www.omgwiki.org/dido/ Printed on 2022/08/09 13:01

interface

Interfaces
are similar to abstract contracts2), but they cannot have any functions implemented. There are further
restrictions:
•
They cannot inherit from other contracts, but they can inherit from other interfaces.
•
All declared functions must be external.
•
They cannot declare a constructor.
•
They cannot declare State Variables.
•
They cannot declare function modifiers modifiers.
Some of these restrictions might be lifted in the future.
Interfaces are basically limited to what the Contract ABI can represent, and the conversion between the ABI
and an interface should be possible without any information loss.
•
Note: The difference between an Interface and an Abstract Contract is the interface has no
implementations for the function. And abstract contract can have some functions with implementations
and some without implementations.
The following is an examle Interface called EIP 20: ERC-20 Token Standard3).

pragma solidity ^0.8.7;
// SPDX-License-Identifier: MIT

interface IERC20 {
 function totalSupply()
 external
 view
 returns (uint256);
 function balanceOf
 (address account
)
 external
 view
 returns (uint256);
 function transfer
 (address recipient,
 uint256 amount
)
 external
 returns (bool);
 function allowance
 (address owner,
 address spender
)
 external
 view
 returns (uint256);
 function approve
 (address spender,
 uint256 amount
)
 external
 returns (bool);
 function transferFrom
 (address sender,
 address recipient,
 uint256 amount
)
 external
 returns (bool);
 event Transfer
 (address indexed from,
 address indexed to,
 uint256 value
);
 event Approval
 (address indexed owner,
 address indexed spender,
 uint256 value
);
} // End IERC20 interface

https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.b_stds:defact:ethereum:eip:erc_0020

2022/08/09 13:01 5/10 2.3.4.8.4.6 Pure Methods

DIDO Wiki - https://www.omgwiki.org/dido/

library

Libraries, in Solidity, are similar to contracts, but they are deployed only once at a specific address and
their code is reused using the delegatecall operation4) is a low level function similar to call.
When contract A executes delegatecall to contract B, B's code is excuted with contract A's storage,
msg.sender and msg.value. Solidity By Example, Versoin 0.8.10, Delegatecall, Accessed: 2 January 2022
)) feature of the Ethereum Virtual Machine (EVM).
Therefore, when a library functions are called, the code is executed in the context of the calling
contract, i.e. this points to the calling contract, and especially the storage from the calling contract can be
accessed. A library is an isolated source code and only has access State Variables defined by the calling
contract when the variables are explicitly supplied. Library functions are only called directly (i.e. without
the use of delegatecall) when the function does not modify the state (i.e. in other words, the functions
are view or pure functions).
To contracts that use Libraries, the library behaves as base contracts. The libraries are not
explicitly visible within the inheritance hierarchy of the derived contract, but calls made to the library
functions appear calls to functions of explicit base contracts and require the use of qualified names
such as Library.function(). Naturally, calls to internal functions follow the usual internal calling
convention allowing all internal types to be stored stored in memory raather than passed by reference (i.e.,
not copied).
An example:

pragma solidity ^0.7.1;
pragma abicoder v2;
// SPDX-License-Identifier: MIT

library Geolocation
{ struct Coordinate
 { uint Latitude;
 uint Longitude;
 } // End Location structure
 struct DistanceMeasurement
 { uint Distance;
 string UnitsOfMeasurement;
 } // End Distance Struct
 function distanceBetweenCoordinates
 (Coordinate memory _originalLocation,
 Coordinate memory _nextLocation
)
 public
 pure
 returns (DistanceMeasurement memory)
 { // actually do the calculation here
 } // End distanceBetweenCoordinates function
} // End geolocation library

struct

Structures, in Solidity, is not unlike a simple struct in C, C++ or C#. Sometimes, structs are thought of
as a contract that does not allow the inclusion of functions in the definition. In other words, it is a
datatype that is a collection of other datatypes referenced by a single name.
•
Structs are defined as stand-alone entities in Solidity, or they can be encapsulated within a library or a
contract. Structs declared outside a contract facilitates reuse.
•
Struts are generally contiguous memory and can be used in collections such as arrays.
An example:

pragma solidity ^0.7.1;
// SPDX-License-Identifier: MIT

struct coordinate
{ uint Latitude;
 uint Longitude;
} // End Location structure

contract MyContract
{ // An array of locations tracking movements
 coordinate[] public movementTrace;
} // End MyContract Contract

does have support defining and using General Methods, those functions not directly
pertaining to the Smart Contract, but can be used by the smart contracts but it does
support being able to create libraries of reusable functions that support a way to
provide operators for specific types.

https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:e:evm

Last
update:
2022/05/27
19:36

dido:public:ra:1.2_views:3_taxonomic:4_data_tax:08_objects:07_opers:09_general https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:1.2_views:3_taxonomic:4_data_tax:08_objects:07_opers:09_general

https://www.omgwiki.org/dido/ Printed on 2022/08/09 13:01

Pure Functions

Return to Top

Ethereum's Solidity has a special label to identify functions that qualify for the pure
classification meeting the definition of Pure Function given earlier. Not surprisingly,
they are identified with pure label. The purity rules are enforced by the Solidity
compiler. The pure function in solidity can be thought of as a black box and only
relies on the data pased into it for processing. It can use local variables defined within
the pure function. The compiler throws an error if the pure function tries to5):

read or update State Variables
access the contract's address
acccess the contract's balance
access any global variable block
access the msg
call a function that is not pure

In the below example, the contract Test defines a pure function to calculate the
product and sum of two numbers.

pragma solidity ^0.7.1;
// SPDX-License-Identifier: MIT

contract TestContract
{
 function getResult
 (uint _leftSide,
 unit _rightSide
)
 public
 pure
 returns
 (uint product,
 uint sum
)
 { product = _leftSide * _rightSide;
 sum = _leftSide + _rightSide;
 } // End getResult function
} // End TestContract contract

Libraries

Return to Top

2022/08/09 13:01 7/10 2.3.4.8.4.6 Pure Methods

DIDO Wiki - https://www.omgwiki.org/dido/

As of Solidity 8.1, it is possible to defines a library. A library is a kind of
contract, that has no Ethereum Storage associated with it and in addition, it cannot
hold ether. One way to think bout a solidity library is as a Singleton in the
Ethereum Virtual Machine (EVM). In other words, it is a piece of code callable from any
contract without the need to redeploy it. 6)

Libraries in Solidity contracts are blocks of reusable code containing functions
usable by other contracts on the blockchain network. When used correctly,
libraries support modular, Object-Oriented Programming (OOP) designs.

The main advantage of using library is code reusability across multiple contracts
preventing duplication of code and the reuse of testing snd documentation of the code.
In addition, libraries save on gas by not deploying the code multiple times on the
blockchain.

Libraries are a special form of contracts with the following restrictions:

Are singletons
Not allowed any storage or state variables that change
Cannot have fallback functions
Have no event logs
Do not hold ether
Are stateless
Cannot use destroy
Cannot inherit or be inherited

Libraries allow for the addition of functionality to the basic types (i.e., uint) or
complex user defined types (i.e., struct). Libraries are isolated from other blocks of
code (i.e., contracts) that have no rely on the storage (i.e., state variables) from
the calling contract and supplied to the functions.7)

Libraries support different Data Types:

User defined strut
User derinde enum
User defined immutable variables (i.e., constant)

Note: Library constants become part of the Bytecode rather than in
storage (i.e., not as variables on the blockchain itself)

Example of Defining a Library

Return to Top

The following code provides examples for:

Creates a library called StudentRecord (Line 4)

https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:e:ethereum_storage
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:s:singleton
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:e:evm
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:o:oop
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:d:data_type
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:b:bytecode
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:e:ethereum_storage

Last
update:
2022/05/27
19:36

dido:public:ra:1.2_views:3_taxonomic:4_data_tax:08_objects:07_opers:09_general https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:1.2_views:3_taxonomic:4_data_tax:08_objects:07_opers:09_general

https://www.omgwiki.org/dido/ Printed on 2022/08/09 13:01

Creates a user defined type (i.e., struct) defining a StudentRecord
concept adding the following fields: (Lines 5-9)

name (Line 6)
studentNumber (Line 7)
totalClassPoints (Line 8)

Defines a function named addPoints that accepts two parameters3.
(Lines 11-17):

An instance of a StudentRecord in storage (Line 12)
The earnedPoints to add to the students record (Line 13)
The actual calculation of the students totalClassPoints (Line 16)
The end of the definition of addPoints function

End of the definition of the library (Line 17)4.

pragma solidity ^0.8.1;
// SPDX-License-Identifier: MIT

library StudentLibrary
{ struct StudentRecord
 { string name;
 uint studentNumber;
 uint totalClassPoints;
 } // End StudentRecord structure
 function addPoints
 (StudentRecord storage _studentRecord,
 uint _earnedPoints
)
 public
 { _studentRecord.totalClassPoints += _earnedPoints;
 } // End addPoints function
} // End StudentRecord library

contract MyClass
{ // Uses the newly created StudentLibrary
 mapping (uint => StudentLibrary.StudentRecord)
studentRoster;
 function addQuizResults() external
 { // Add points for each student from latest quiz
 StudentLibrary.addPoints (studentRoster[0], 10);
 StudentLibrary.addPoints (studentRoster[1], 5);
 StudentLibrary.addPoints (studentRoster[2], 8);
 } // End addQuizResults function
} // End MyClass contract

Example of Importing and Using a Library

2022/08/09 13:01 9/10 2.3.4.8.4.6 Pure Methods

DIDO Wiki - https://www.omgwiki.org/dido/

Return to Top

In the example, the library code is saved iin the same file as contract
MyClass. It could be stored in a separte file and then imported iinto the
contract MyClass file. If the StudentLibrary file is kept in its own file
in the same directory as the contract MyClass file
StudentLibrary.sol.

In the folowing exaple, both the import and the using are used:

The entirity of the library StudentLibrary is replaced by an
import statement (Line 4)
The Using statements extends the instances of StudentRecord
with the operations iin the StudentLibrary (Line 7)
The code is modified to use the cleaner, more easily read
StudentLibrary defined function (Lines 11-13)

This form of defining and using a library facilitates the reuse of the
library by multiple Smart Contracts, helps with the maintenance by only
having the code defined once, and helps with creating Object-Oriented
(OO) architectures and designs.

pragma solidity ^0.8.1;
// SPDX-License-Identifier: MIT

import StudentLibrary from "./StudentLibrary.sol";

contract MyClass
{ using StudentLibrary for
StudentLibrary.StudentRecord;
 mapping (uint => StudentLibrary.StudentRecord)
studentRoster;
 function addQuizResults() external
 { // Add points for each student from latest quiz
 studentRoster[0].addPoints (10);
 studentRoster[1].addPoints (5);
 studentRoster[2].addPoints (8);
 } // End addQuizResults function
} // End MyClass contract

 [char]Review

1)

Alvin Alexander, AlvinAlexander.com, The Definition of “Pure Function”,
Accessed: 30 December 2021,
https://alvinalexander.com/scala/fp-book/definition-of-pure-function/
2)

Abstract contracts are contracts that have at least one function without

https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:o:oo
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:o:oo
https://alvinalexander.com/scala/fp-book/definition-of-pure-function/

Last
update:
2022/05/27
19:36

dido:public:ra:1.2_views:3_taxonomic:4_data_tax:08_objects:07_opers:09_general https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:1.2_views:3_taxonomic:4_data_tax:08_objects:07_opers:09_general

https://www.omgwiki.org/dido/ Printed on 2022/08/09 13:01

its implementation. An instance of an abstract cannot be created. Abstract
contracts are used as base contracts so that the child contract can inherit
and utilize its functions. GeeksForGeeks, Solidity – Abstract Contract, 13
July 200, Accessed: 2 January 2022,
https://www.geeksforgeeks.org/solidity-abstract-contract/
3)

Crypto Market Pool, Blockchain Engineer Resource, Interface in Solidity
smart contracts, Accessed: 2 January 2022,
https://cryptomarketpool.com/interface-in-solidity-smart-contracts/
4)

delegatecall
5)

GeeksForGeeks, Solidity – View and Pure Functions, 13 July 2020,
Accessed: 2 January 2022,
https://www.geeksforgeeks.org/solidity-view-and-pure-functions/
6)

Jorge Izquierdo, Aragon Association, Library Driven Development in
Solidity, 13 February 2017, Accessed: 28 December 2021,
https://aragon.org/blog/library-driven-development-in-solidity-2bebcaf8873
6
7)

Crypto Market Pool, Blockcahin Engineer Resource, Libraries in Solidity
smart contracts, Accessed 28 December 2021,
https://cryptomarketpool.com/libraries-in-solidity/

From:
https://www.omgwiki.org/dido/ - DIDO Wiki

Permanent link:
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:1.2_views:3_taxonomic:4_data_tax:08_objects:07_opers:09_general

Last update: 2022/05/27 19:36

https://www.geeksforgeeks.org/solidity-abstract-contract/
https://cryptomarketpool.com/interface-in-solidity-smart-contracts/
https://www.geeksforgeeks.org/solidity-view-and-pure-functions/
https://aragon.org/blog/library-driven-development-in-solidity-2bebcaf88736
https://aragon.org/blog/library-driven-development-in-solidity-2bebcaf88736
https://cryptomarketpool.com/libraries-in-solidity/
https://www.omgwiki.org/dido/
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:1.2_views:3_taxonomic:4_data_tax:08_objects:07_opers:09_general

	2.3.4.8.4.6 Pure Methods
	Overview
	DIDO Specifics
	Pure Functions
	Libraries
	Example of Defining a Library
	Example of Importing and Using a Library

