
2022/05/23 02:30 1/5 4.3.3.2 Reusability

DIDO Wiki - https://www.omgwiki.org/dido/

4.3.3.2 Reusability

Return to Maintainability

About

Reusability is a way to save time, resources and effort by reusing existing system or software assets that
were created previously. Sometimes these assets maintain all the functionality they were originally
constructed to provide (e.g., widgets in a Graphical User Interface (GUI)). Sometimes, well written
modularized software is abstracted into generalized Modules that can then be used to serve one or more
design patterns, e.g., a linked list, hash algorithm, etc.) When this is done, the software is considered to
be reusable.

Reusability is defined as the ability of something to be used more than once. In contrast, reuse is defined
as the action of using something more than once. Reusability promotes and enables reuse but does not
ensure complete reusability.1). Therefore, merely creating a system or program for Reusability is not
important unless there is also a “marketing effort” to promote the reuse of the system or product.
Marketing in this context does not mean commercial marketing. Often marketing can be achieved just
through making the code available as Open Source.

The meaning and application of 'reuse' also depends on who you ask. To a Software Engineer, they
naturally think about reuse of code, executables or even software patterns, etc. To a Systems Engineer,
reuse makes them think about use cases, state transition diagrams, etc. To an Ontologist, reuse means
glossaries, vocabularies and ontologies. To a contracting officer, they makes them think of contracts and
performance specifications. Thus, it is obvious that even within a technology area, there are lots of
different ideas about what, where, and how to re-use artifacts.

Jones2) identifies 10 different areas within a software project where reuse can be applied:

Architectures1.
Source Code2.
Data3.
Designs4.
Documentation5.
Estimates6.
Human Interfaces7.
Plans8.
Requirements9.
Test Cases10.

Types of Reuse

Return to Top

https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:1.4_req:2_nonfunc:20_maintainability
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:r:reusability
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:g:gui
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:p:performancespec
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:s:sourcecode


Last
update:
2021/10/30
15:01

dido:public:ra:1.4_req:2_nonfunc:20_maintainability:reuseability https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:1.4_req:2_nonfunc:20_maintainability:reuseability

https://www.omgwiki.org/dido/ Printed on 2022/05/23 02:30

Reuse is a multi-faceted idea, which requires an overall classification for the various types of reuse.
Frakes and Terry 3) have developed a taxonomy for reuse based on an extensive review of the literature
on Reuse and Reusability. Table 1 depicts the two major elements of the reuse taxonomy: Facets, which
cover all the types of reuse, and Terms, which are used to describe each Facet. For example, the
Development Scope Facet has two possible Terms within it: Internal and External. When describing
the Development Scoping used in a company or project, this can be Internal, External or both. The
Terms associated with each Facet are defined in Table 2.

Table 1: Types of Software Reuse 3)

Facet
Development

Scope1) Modification2) Approach3) Domain
Scope4) Management5) Reused Entity6)

Internal (Private) White Box Generative Vertical Systematic
(Planned ) Code

External (Public) Black Box
(vrbatum) Compositional Horizontal Ad Hoc Abstract Level

Adaptive (porting) In-the-Small Instance Level

In-The-Large Customization
Reuse

Indirect Generic
Direct Source Code

Carried Over
Leveraged

1) Development Scope refers to whether the reusable components are from a source external or
internal to a project.
2) Modification refers to how much a reusable asset is changed.
3) Approach refers to different technical methods for implementing reuse.
4) Domain Scope refers to whether reuse occurs within a family of systems or between families of
systems.
5) Management refers to the degree to which reuse is done systematically.
6) Reused Entity refers to the type of the reused object.

Clear definitions of types of reuse are necessary prerequisites to measurement. Table 2 provides a
faceted classification of reuse definitions gathered from the literature Each column specifies a facet, with
the facet name inbold.

Table 2: Definitions of Types of Reuse 3)

Type of Reuse Description

abstract-level
Abstract-level reuse is the use of high-level abstractions within an Object-Oriented
(OO) inheritance structure as the foundation for new ideas or additional
classification schemes.

ad-hoc
Ad-hoc reuse refers to the selection of components that are not designed for reuse
from general libraries or where reuse is conducted by an individual in an informal
manner

https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:t:taxonomy
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:o:object
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:o:oo
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:o:oo


2022/05/23 02:30 3/5 4.3.3.2 Reusability

DIDO Wiki - https://www.omgwiki.org/dido/

Type of Reuse Description

adaptive
Adaptive reuse is a reuse strategy that uses large software structures as
invariants and restricts variability to low-level, isolated locations. An example is
changing arguments to parameterized modules.

black-box Black-box reuse is the reuse of software components without any modification.
See verbatim.

Carry-Over
Carry-Over Reuse is when software used with one version of a software
component is carried over and used as is in a subsequent version of the same
system.

compositional

Compositional reuse is a reuse strategy that uses small parts as invariants and
then uses variant functionality to link these parts together. Programming in a high
level language is an example.
Compositional reuse is the use of existing components as building blocks for new
systems. The Unix shell is an example

customization
Customization reuse is the use of object-oriented inheritance to support
incremental development. A new application may inherit information from an
existing class, overriding some methods in that class and adding new behaviors.

direct Direct reuse is reuse without going through an intermediate entity.

external
External reuse level is the number of lower level items from an external repository
in a higher level item divided by the total number of lower level items in the
higher level item. See Public.

generative
Generative reuse is reuse at the specification level using application or code
generators. Generative reuse offers the “highest potential payoff.” The Refine and
MetaTool systems are state of the art examples.

generic Generic reuse is reuse of generic packages, such as templates for packages or
subprograms.

horizontal Horizontal scope reuse is reuse of generic parts in different applications. Booch
Ada Parts and other subroutine libraries are examples.

In-the-large Reuse-in-the-large is the use of large, self-contained packages such as
spreadsheets and operating systems.

In-the-small
Reuse-in-the-small is the reuse of components that are dependent on the
environment of the application to achieve full functionality. Favaro asserts that
component-oriented reuse is reuse-in-the-small.

indirect
Indirect reuse is reuse through an intermediate entity. The level of indirection is
the number of intermediate entities between the reusing item and the item being
reused

instance-level Instance-level reuse is the most common form of reuse in an object-oriented
environment. It is defined as simply creating an instance of an existing class.

internal
Internal reuse level is the number of lower level items not derived from an
external repository and used more than once divided by the total number of lower
level items not derived from an external repository. See Private.

leveraged Leveraged reuse is reuse with modifications.

private Private reuse is“the extent to which modules within a product are reused within
the same product.” See Internal .

public Public reuse is “the proportion of a product which was constructed externally.”
See External.

source-code Source code reuse is the low-level modification of an existing object-oriented class
in order to change its performance characteristics.

https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:u:unix
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:a:application
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:c:class
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:e:entity
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:o:os
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:i:instance
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:p:performance


Last
update:
2021/10/30
15:01

dido:public:ra:1.4_req:2_nonfunc:20_maintainability:reuseability https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:1.4_req:2_nonfunc:20_maintainability:reuseability

https://www.omgwiki.org/dido/ Printed on 2022/05/23 02:30

Type of Reuse Description
systematic
(planned mode)

Systematic/planned mode reuse is the systematic and formal practice of reuse as
found in software factories.

verbatim Verbatim reuse is reuse of some item without modifications. See Black-Box.

vertical scope Vertical scope reuse is reuse within the same application or domain. An example
is domain analysis or domain modeling.

white-box White-box reuse is the reuse of components by modification and adaptation.

Types of Metrics and Models

Return to Top

Frakes and Terry categorize the kinds of metrics and models that can be used for evaluating reuse.

Figure 1: Categorization of Reuse Metrics and Models 3)

Table 3: Descriptions of Reuse Metrics and Models 3)

Metric or Model Description

Cost-Benefit Analysis
Uses models to include economic cost/benefit analysis, as well as, quality and
productivity payoffs. Maturity assessment models categorize reuse programs
by how advanced they are in implementing systematic reuse.

Maturity Assessment Uses models to categorize reuse programs by how advanced they are in
implementing systematic reuse.

Amount of Reuse Uses metrics to assess and monitor a reuse improvement effort by tracking
the percentages of reuse for life cycle objects.

Failure Modes Analysis Identifies and orders the impediments to reuse in a given organization.
Reusability Metrics Indicates the likelihood that an artifact is reusable.
Reuse Library Metrics Manages and Tracks usage of a reuse repository.

* Note: Organizations often encounter the need for these metrics and models in the order presented.



2022/05/23 02:30 5/5 4.3.3.2 Reusability

DIDO Wiki - https://www.omgwiki.org/dido/

DIDO Specifics

Return to Top

Startup initialization is minimal because of DDS Discovery.

To be added/expanded in future revisions of the DIDO RA

1)

Luis Zafra, Know the Difference: Reusability vs. Reuse, Global Logic, 22 September 2015, Accessed 3
August 2020, https://www.globallogic.com/latam/blog/know-the-difference-reusability-vs-reuse/
2)

Jones, C. Software return on investment preliminary analysis, 1993, Software Productivity Research, Inc.,
3)

William Frakes and Carol Terry, Software Reuse and Reusability Metrics and Models, Virginia Tech,
Accessed on 4 August 2020,
https://pdfs.semanticscholar.org/53d3/37f49c7d1ef98968ae5ed7e699096974db10.pdf

From:
https://www.omgwiki.org/dido/ - DIDO Wiki

Permanent link:
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:1.4_req:2_nonfunc:20_maintainability:reuseability

Last update: 2021/10/30 15:01

https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:d:discovery
https://www.globallogic.com/latam/blog/know-the-difference-reusability-vs-reuse/
https://pdfs.semanticscholar.org/53d3/37f49c7d1ef98968ae5ed7e699096974db10.pdf
https://www.omgwiki.org/dido/
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:1.4_req:2_nonfunc:20_maintainability:reuseability

	4.3.3.2 Reusability
	About
	Types of Reuse
	Types of Metrics and Models

	DIDO Specifics


