
2022/05/31 13:27 1/2 EIP 1767: GraphQL interface to Ethereum node data (DRAFT)

DIDO Wiki - https://www.omgwiki.org/dido/

EIP 1767: GraphQL interface to Ethereum node data (DRAFT)

Return to Ethereum ERCs

Note: The following is an excerpt from the official Ethereum site. It is provided here as a
convenience and is not authoritative. Refer to the original document as the authoritative reference.

Table 1: Data sheet for GraphQL interface to Ethereum node data
Title GraphQL interface to Ethereum node data
Author Nick Johnson, Raúl Kripalani, Kris Shinn
Status Draft
Created 2019-02-14
Description http://eips.ethereum.org/EIPS/eip-1767
Specification http://eips.ethereum.org/EIPS/eip-1767#Specification
Category Interface

Abstract

This EIP specifies a GraphQL schema for accessing data stored on an Ethereum node. It aims to
provide a complete replacement to the read-only information exposed via the present JSON-RPC
interface, while improving on usability, consistency, efficiency, and future-proofing.

Motivation

The current JSON-RPC interface for Ethereum nodes has a number of shortcomings. It’s informally
and incompletely specified in areas, which has led to incompatibilities around issues such as
representation of empty byte strings (“” vs “0x” vs “0x0”), and it has to make educated guesses
about the data a user will request, which often leads to unnecessary work.

For example, the totalDifficulty field is stored separately from the block header in common
Ethereum node implementations, and many callers do not require this field. However, every call to
eth_getBlock still retrieves this field, requiring a separate disk read, because the RPC server has
no way of knowing if the user requires this field or not.

Similarly, transaction receipts in go-ethereum are stored on disk as a single binary blob for each
block. Fetching a receipt for a single transaction requires fetching and deserializing this blob, then
finding the relevant entry and returning it; this is accomplished by the
eth_getTransactionReceipt API call. A common task for API consumers is to fetch all the
receipts in a block; as a result, node implementations end up fetching and deserializing the same
data repeatedly, leading to O(n^2) effort to fetch all transaction receipts from a block instead of
O(n).

https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.b_stds:defact:ethereum:eip
http://eips.ethereum.org/EIPS/eip-1767
http://eips.ethereum.org/EIPS/eip-1767#Specification
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:e:ethereum_node
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:i:interface
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:u:usability
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.a_glossary:a:api


Last
update:
2021/08/18
10:53

dido:public:ra:xapend:xapend.b_stds:defact:ethereum:eip:erc_1767 https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.b_stds:defact:ethereum:eip:erc_1767

https://www.omgwiki.org/dido/ Printed on 2022/05/31 13:27

Some of these issues could be fixed with changes to the existing JSON-RPC interface, at the cost of
complicating the interface somewhat. Instead, we propose adopting a standard query language,

From:
https://www.omgwiki.org/dido/ - DIDO Wiki

Permanent link:
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.b_stds:defact:ethereum:eip:erc_1767

Last update: 2021/08/18 10:53

https://www.omgwiki.org/dido/
https://www.omgwiki.org/dido/doku.php?id=dido:public:ra:xapend:xapend.b_stds:defact:ethereum:eip:erc_1767

	[EIP 1767: GraphQL interface to Ethereum node data (DRAFT)]
	[EIP 1767: GraphQL interface to Ethereum node data (DRAFT)]
	EIP 1767: GraphQL interface to Ethereum node data (DRAFT)
	Abstract
	Motivation




