UML Profile and Metamodel for Services
UPMS
“Services Metamodel”

Submission Overview and Status
Jim Amsden, IBM March, 2007
Problem Statement – Standards driven by business needs

- Globalization, rapid change, the Internet and the “Flat World” stimulating business innovation and integration
 - Each business unit to focus on their key value while leveraging capabilities provided by others for non-core functions
 - Requires business agility to respond to market opportunities and challenges

- Evolution in the business parallels evolution in IT solutions
 - Complexity Management
 - The ability to respond to dynamic change
 - Modularity
 - Encapsulation
 - Separation and integration of concerns
 - Deferred commitment
 - Solutions through composition of other solutions
 - Adaptability
 - Reuse

- Each evolutionary step introduces additional capabilities for separation of concerns, loose coupling, and late binding
Facing Business and IT challenges requires SOA

- A framework for matching needs and capabilities, and combining capabilities to meet needs through services
- A foundation enabling business agility and adaptability
- Promote reuse, growth and interoperability to realize the value inherent in individual assets
- Reflects continuing evolution of computing models to enable reuse and reduce coupling
- Greater focus on separation of concerns and delegation
- Minimize trust and connection assumptions
 - Ownership, distribution and implementation
BPM and SOA can help realize business agility

- Clear separation of the Business operations from services solutions
- Enable integration at the business and IT solution levels independently
- BPM captures and validates business organizational and operational requirements and constraints
- SOA enables flexible solutions to business requirements
But there is a proliferation of protocols, specifications, metamodels and tools

- Many are incompatible with each other
- SOA platforms are in immature and rapidly changing
- OASIS SOA Reference Model has only just been completed
- As a result it will be harder for companies to realize the BPM and SOA potential
- Without costly conversion tools and runtime adapters and mediators
 - Higher development costs
 - Requirement for more skilled developers
 - Bloat in both development and runtime platforms
 - Increased potential for bugs
What is needed is a new Services Standard

- Enable interoperability and integration at the model level
- At a higher-level of abstraction separate from platform variability
- Address business integration and service interaction concerns at the architectural level
 - Architecture is the bridge between the business requirements and IT solutions
- Enable SOA on existing platforms through MDA
- Allows for flexible platform choices
- While preventing existing solutions from inhibiting platform evolution
- Leverage and integrate with existing OMG standards for end-to-end lifecycle development and management
Why WS-* is too much and not enough

- Semantically thin specifications
- Rapidly evolving specifications, likely to be more churn
- Relatively low-level abstraction rooted in XML
 - Communication may be local or remote
- Focused on wire protocols, data interchange, and execution environments
- Represent only one of many possible SOA realizations
- Many standards focused on individual technology segments
- Interdependencies and relationships result from overlaps and gaps
 - Leads to vendor variability and interoperability issues
Why UML2 is too much and not enough

- UML2 covers potentially unrelated modeling domains
 - UseCases for requirements
 - Many different styles of behavioral modeling
 - Deployment modeling
 - Many other modeling constructs
 - Not particularly service centered
- Need a realization of SOA reference model independent of SOA implementation strategies
- Need better definition of service contracts independent of SOA design
- Need more formal separation of specification and realization
- Need location and binding information for modeling service interactions (because of reduced coupling in a distributed environment)
- Idempotent, long-running, compensation semantics
Component Based Development

- Separates component specification from realization
 - Clients only depend on the specification (interfaces)
 - Can substitute evolving realizations to fix bugs or add new features
 - Specification captures one set of concerns
 - Realization addresses those concerns while handling others

- Adds ports for better encapsulation and isolation
 - Better decoupling between requestors and providers
 - Component client only depends on what they need not the whole component

- Provides a better unit of reuse
 - Component is an autonomous entity
 - Specifies what it provided and what is necessary for its use
 - More formal support for commonality and variability
Service Oriented Architectures were introduced to:

- Addresses the effect of application integration across ownership boundaries
- Use Service Level Agreements to capture contracts
- Extends CBD with additional distributed computing and deployment concerns
- Provide more reflective and dynamic systems
 - Behavior can come and go
 - Clients query for service with acceptable QoS
 - Raise exceptions if none found
- Include concepts for publishing, finding, and dynamically binding to services
- Driven by practical implications of the Web and existing middleware platforms
 - Integration between J2EE and .Net
This is a good time for OMG to enter the SOA landscape

- There is common recognition of Business value of SOA
- The importance of WS-* or Web Services as enabling SOA technology is well established
- There are any existing OMG standards that are applicable to SOA
- There is an opportunity for OMG to contribute in order to:
 - Make it SOA easier to development, understand and manage
 - Provide a more stable SOA environment (through abstraction and separation of concerns)
 - Enable business value through standards for agile processes and supporting technologies
- This will be necessary to achieve:
 - Interoperability necessary for business integration
 - Growth in marketplace of reusable services
Goals of the RFP

- A common vocabulary and metamodel to unify the diverse service definitions that exist in the industry.
- Clarify UML semantics concerned with services modeling and establish modeling best practices.
- Complement existing UML metamodel by defining an extension to UML to ensure complete and consistent service specifications and implementations.
- Integrate with and complement standards developed by other organizations such as W3C and OASIS
- Support a service contract describing the collaboration between participating service consumers and service providers
 - clearly separate service requirements and specification from realization.
- Enable traceability between contracts specifying services requirements, service specifications that fulfill those requirements and service providers that realize service specifications.
- Facilitate the adoption of Service Oriented Architectures through
 - more abstract and platform independent services models to speed service development,
 - decouple service design from evolving implementation, deployment and runtime technologies, and
 - enable generation of platform specific artifacts.
- The ability to exchange services models between tools using XMI.
Out of scope – for future RFPs

Focus first on Service Capture

- Methodologies for service design.
- Services governance or compliance.
- Service metrics, policy, security, trust, performance, or other Qualities of Services
- Wire protocols and/or message transfer encodings or marshalling.
- Message delivery reliability, transaction scopes, or other mechanisms for managing data integrity.
- Service brokering, publishing, discovery, service addressing, service registries, asset management.
- Service runtime configuration and deployment.
- Dynamic binding, service federation, mediation, service bus structure, or other service execution concerns.
- User experience or user interfaces.
Where the Services Metamodel fits into SOA
Relationship to existing OMG specifications

- ODM
- BMM, OSM, SBVR, BPMN and BPDM
- UML2, OCL, EDOC
- KDM, IMM
- MOF, QVT, XMI
- ODM, RAS
Relationship to other specifications

- OASIS Reference Model for Service Oriented Architecture
- XSD Specification
- Service Data Objects Specification
- WSDL Specification
- Service Component Architecture Specification
- WSBPEL Specification
- FEA Service Component Reference model (SRM)
- FEA Services and Components Based Architectures (SCBA)
- ebXML
Mandatory Requirements

- MOF metamodel and equivalent UML2 profile
- Extend, but not conflict with UML semantics
- Notation icons for services extensions
- Platform independent
- Non-normative mapping to Web Services
Service Contracts

- Specify service contracts (architecturally neutral)
 - Interactions between service consumers and providers
 - Realize use cases (for requirements)
 - Specified functions
 - Participants and the roles they play
 - Responsibilities of participating roles
 - Behavioral rules for how roles must interact
 - Constraints for objectives that must be met
- Service contract semantically equivalent to BPDM choreography and collaborations
- Service specifications and providers fulfill service contracts
- Loose and strict contract fulfillment
- Use of service contracts is optional
Service Specification

- Separate for how services are provided or implemented
 - Provided and required service interfaces
 - Service operations (distributed, concurrent)
 - Operation pre and post conditions, parameters and exceptions
 - Constraints service providers must honor
 - Interaction points through which consumers and providers connect
 - Behaviors service operation methods indicating required semantics of realizing service providers

- Use of service specifications is optional
Service Data

- Structural information exchanged between service consumers and service providers
- Attachments for opaque information
- Usage semantics make no assumptions with regard to global synchronization, control or shared address spaces
Service Invocation and Event Handling

- Support synchronous and asynchronous service invocation
- Synchronicity is a property of the invocation, not the service definition
 - Clients determine how services are used
- Designate the ability to receive an event
- Generate events targeted at a specific service provider or broadcast to interested providers
- Service operations responding to events are asynchronous, have no outputs, and may raise exceptions
Service Parameters, Consumers and Providers

- Parameter types are primitive types or service data
- Designate service consumer and services required
- Designate service provider and services provided
- Services only provided through interaction points, not direct connections between service consumers and service providers
- Service provider may realize zero or more service specifications
- Service provider must be conformant to all realized service specifications
- Interaction point of a service provider provides and/or requires one or more service interfaces
- Service provider specifies binding information applicable to all interaction points
- Interaction point can restrict or extend service bindings
Service Realizations and Composition

- Specify realizations of provided service operations through owned method behaviors of service provider
- Multiple styles for specifying method behaviors – Activity, Interaction, StateMachine, ProtocolStateMachine, OpaqueBehavior, etc.
- Method behavior style may differ from that used by its specification
- Specify how services are composed from other services
- No assumptions about or constraints on the number of recursive levels of composed services, or arbitrary distinctions between composition levels.
Connecting Service Consumers and Providers

- Service channels for connecting between usages of service consumers and service providers in some containing element.

- Support different degrees of coupling between consumers and providers through service provider specified as:
 - A service interface
 - A service specification
 - A particular (concrete) service provider

- Service channel selects from bindings expected by service consumer and provided by service provider.
Extensibility and Service Partitions

- Enable customization and extending services through
 - Configuration properties (profile markings)
 - Refinement and redefinition through generalization
 - Pattern or template specification and instantiation

- Put service specifications and/or providers into logical groupings for organization and management

- Specify constraints on service connections between service partitions.
Service Model Interchange

- Service model interchange through XMI
- Service models captured by the services metamodel are exchanged according to MOF-to-XMI mapping rules
- Service models captured by the services UML2 profile are exchanged according to the UML rules for exchanging instances of UML models with applied profiles
- Define interchange compliance levels for each of these XMI document formats
Optional Requirements

- Additional non-normative mappings to existing platforms and languages for service specification and/or execution
- Specify preferred encoding for service data exchange
- Binding metamodel
Issues to discuss

- Relationship of submission and UML to demonstrate semantic consistency
- How the specification supports automated consistency checks for model validation
 - Especially between service contracts and the service specifications and providers that realize them
- Applicability to ESB and common runtime architectures
- Relationship to UDDI
Summary

OMG Software Services Profile and Metamodel RFP
Timeline

<table>
<thead>
<tr>
<th>Event or Activity</th>
<th>Actual Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of RFP by TF</td>
<td>Sept 4, 2006</td>
</tr>
<tr>
<td>TC votes to issue RFP</td>
<td>Sept 27, 2006</td>
</tr>
<tr>
<td>LOI</td>
<td>Nov 28, 2006</td>
</tr>
<tr>
<td>Initial submission presentations</td>
<td>June 4, 2007</td>
</tr>
<tr>
<td>Revised submissions due</td>
<td>Nov 19, 2007</td>
</tr>
<tr>
<td>Final Submission</td>
<td>March 2008</td>
</tr>
</tbody>
</table>