Machine Readable Artifacts for OMG Submissions
This document provides detailed guidance for files that accompany OMG specification documents: often these are the ‘heart’ of any implementation. It uses the words “must” and “should” for mandatory requirements and recommendations respectively.
Principles

Machine readable content should be in separate files not embedded in their entirety into specification documents.

Though files can be quoted in documents, the separate file will be the normative version

The files must be referenced from a manifest associated with the specification. They will have both an OMG document number and a URL.
The files should not arbitrarily change between versions, for example through use of a new tool (or versions thereof). That includes changes to identifiers.

Q: should the manifest info be repeated on front page of the spec?

Q: to what extent should files be combined in a Zip file with a single document number? Should the manifest also be included in the zip?
Options:

· Each in separate file (whether zipped or not)

· Normative and informative files in separate zips

· All combined into one file

Types of Model

There are in general three types of model:

· UML Model (same as a UML Model Library)

· UML Profile

· MOF Metamodel

All must be provided as XMI files. Some requirements are common to all types of model and XMI file, others are specific.

Platform Specific Files

These represent realizations of a model for a specific platform. Most common is XML Schema (XSD), but others could include Java, SQL, CORBA IDL. These are often, though not necessarily, generated through a transformation from a model. This document covers only XSDs.
Common requirements for Models

The original file used to create the model, with complete diagram information, must be provided as non-normative. This is to allow subsequent editing. The specific tool and version/patch level must be stated in the manifest
The original files for any non-textual examples in the specification must also be included.

Common errors in models:

· More than one mandatory composite owner for a class – which would require an instance to have more than one composite owner which is invalid

· Mandatory recursive relationship – which would disallow there being a root

XMI files
The normative XMI for the model must be provided as a XMI file.

The XMI must contain no xmi:Extension elements.

The XMI must contain no additional XML namespaces beyond the following:

· The XMI namespace

· The XML namespace for the metamodel (e.g. UML or MOF) and any applied Profiles. These must use the declaration in the specification for (that version of) the standard

· The XSI namespace (only if the following paragraph applies)
The XMI must use xmi:type not xsi:type unless the metamodel (or any it extends) uses no multiple inheritance and has an explicit XMI tag org.omg.xmi.useSchemaExtension = true.

XMI elements must have xmi:ids and should have xmi:uuids. For elements likely to be externally referenced these should be assigned so that they are persistent between serializations and legible. Ids should be legal XML identifiers (e.g. no spaces).
Common errors in XMI:

· Including defaults (e.g. multiplicities of 1)

· Including redundant references to parent elements (e.g. a class referencing its owning package)

Imports?

Metamodels and Profiles
The top level element must be the element <XMI> for metamodels and profiles. This is because any metamodel or profile must have Tags which cannot be owned by Package/Model elements

Must contain MOF tags named org.omg.xmi.nsURI and org.omg.xmi.nsPrefix.
These must be specified in the specification itself and follow the rules in the SMSC Policy Document.
Must refer to the standard Primitive Types, though proxy elements within the XMI file are permitted.
Metamodels

UML Profiles

UML Models

Diagrams
Diagrams should be black and white, though shading is permitted. This is to support printing.

Diagrams embedded into documents should use PNG or SVG format. JPG should be avoided due to loss of quality.

UML diagrams should stick to standard UML notation and not take advantage of ‘extras’ provided by the modeling tool used. Examples of these are:

· Additional icons to indicate Classes or Properties

· Displaying superclass in the name compartment of a Class

· Displaying the metaclass in the name compartment of a Stereotype

UML diagrams should not hide any detail. For example if a class compartment shows some attributes then it must show all of them rather than hiding selected ones. However it is acceptable (and encouraged) to hide the attribute compartment completely in diagrams where that class is not a focus of attention.
XML Schemas (XSD)
Specifications which are metamodels can use the XMI rules to generate an XSD. The XMI rules can be tailored using MOF tags with names starting org.omg.xmi.

Alternatively it is permissible to specify interchange using XSDs not generated using XMI. In this case:

Must use ?? as the schemaLocation

XMI XSDs

Must import XMI.xsd

Must use the namespace declared in the metamodel

Must not use XSD inheritance if the metamodel has any multiple inheritance

Non-XMI XSDs

If derived from a model must have the algorithm declared or referenced.
Use of an opaque and proprietary algorithm within a modeling tool is strongly discouraged since it makes maintenance very problematic since the algorithm may change at subsequent versions, introducing random changes into the generated XSD (not covered by specification changes or balloted issues).

Common problems with XSDs:

· Do not use XML identifiers to support re-use of elements
