
Date: April 2012

This is the OMG submission template in Word and ODT. The OMG document number is pas/2012-
04-08. The template was updated with a new Cover and Preface and supersedes OMG document
pas/2008-10-01.

Precise Semantics of UML Composite
Structures (DRAFT document)

Draft Version 20120810

__

OMG Document Number: mars/2012-04-01

Normative reference: http://www.omg.org/spec/acronym/1.0/

Machine readable file(s): http://www.omg.org/acronym/20120401

Normative: http://www.omg.org/spec/acronym/20120401/foo.xmi

Non-normative: http://www.omg.org/spec/acronym/20120401/non_normative_foo.xmi

__

Sample: The machine readable file(s) URL 20120401 would be used when the schema file
document numbers are ptc/12-04-14, ptc/2012-04-15, ptc/2012-04-16. If the machine
readable files are in a .zip file, please list each file and URL in your Inventory report.

Copyright © 2008, company name
Copyright © 2008, Object Management Group, Inc.
Copyright © 2008, company name

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ ,
Unified Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™,
CORBA logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , IMM™ , MOF™ , OMG Interface
Definition Language (IDL)™ , and OMG SysML™ are trademarks of the Object Management Group. All other
products or company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification
if and only if the software compliance is of a nature fully matching the applicable compliance points as stated in
the specification. Software developed only partially matching the applicable compliance points may claim only
that the software was based on this specification, but may not claim compliance or conformance with this

specification. In the event that testing suites are implemented or approved by Object Management Group, Inc.,
software developed using this specification may claim compliance or conformance with the specification only if
the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue
Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.)

Table of Contents

1 Scope ... 1
2 Conformance ... 3
3 Normative References ... 3
4 Terms and Definitions ... 3
5 Symbols ... 3
6 Additional Information .. 3

6.1 Changes to Adopted OMG Specifications [optional] .. 3
6.2 Acknowledgements ... 3

7 Abstract Syntax ... 4
7.1 Overview ... 4
7.2 CompositeStructures ... 4

7.2.1 Overview .. 4
7.2.2 InvocationActions ... 4
1.1.1 StructuredClasses .. 6
1.1.2 InternalStructures .. 7
1.1.3 Ports .. 11

1.1 Components ... 14
1.1.1 Overview .. 14
1.1.4 BasicComponents .. 14

1.2 Classes ... 16
1.2.1 Overview .. 16
1.1.5 Interfaces .. 16
1.1.6 Dependencies .. 19

1.3 CommonBehaviors .. 25
1.3.1 Overview .. 25
1.1.7 Communications .. 25

8 Semantics .. 27
8.1 Overview ... 27
8.2 Loci ... 27

8.2.1 Overview .. 27
8.2.2 LociL3 .. 27

1.1 Classes ... 28
1.1.1 Overview .. 28
1.1.1 Kernel .. 28

1.2 Actions ... 29
1.2.1 Overview .. 29
1.1.2 IntermediateActions .. 29

1.3 CompositeStructures ... 31
1.3.1 Overview .. 31
1.1.3 StructuredClasses .. 31
1.1.4 InvocationActions ... 40

 Title, version i

 ii Title, version

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

•CORBA/IIOP

•Data Distribution Services

•Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

•UML, MOF, CWM, XMI

•UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

•CORBAServices

•CORBAFacilities

 Title, version iii

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

140 Kendrick Street

Building A, Suite 300

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://www.omg.org/report_issue.htm.

 iv Title, version

http://www.omg.org/report_issue.htm

 Title, version v

1 Scope

The Scope clause shall appear at the beginning of each specification and define, without ambiguity, the subject of the
specification and the aspect(s) covered. It indicates the limits of applicability of the specification or particular parts of it.
It shall not contain requirements.

The scope shall be succinct so that it can be used as a summary for bibliographic purposes.

It shall be worded as a series of statements of fact.

Precise semantics of UML composite structures, DRAFT version 20120810 1

 2 Precise semantics of UML composite structures, DRAFT version 20120810

Figure 1: Architecture

2 Conformance

The Conformance clause identifies which clauses of the specification are mandatory (or conditionally mandatory) and
which are optional in order for an implementation to claim conformance to the specification.

Note: For conditionally mandatory clauses, the conditions must, of course, be specified.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

List of normative references.

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Term

Definition

Term

Definition

Term

Definition

5 Symbols

List of symbols/abbreviations.

6 Additional Information

6.1 Changes to Adopted OMG Specifications [optional]

This specification completely replaces the xxx specification.

6.2 Acknowledgements

Precise semantics of UML composite structures, DRAFT version 20120810 3

7 Abstract Syntax

7.1 Overview

TODO.

7.2 CompositeStructures

7.2.1 Overview

7.2.2 InvocationActions

7.2.2.1 Overview

 4 Precise semantics of UML composite structures, DRAFT version 20120810

Figure 1: InvocationActions diagram

Figure 2: InvocationActions package relationships diagram

7.2.2.2 Class descriptions

Trigger

A trigger specification may be qualified by the port on which the event occurred.

Generalizations

• None

Attributes

• None

Associations

• port : Port [0..*], A optional port of the receiver object on which the behavioral feature is invoked.

InvocationAction

In addition to targeting an object, invocation actions can also invoke behavioral features on ports from where the
invocation requests are routed onwards on links deriving from attached connectors. Invocation actions may also be sent to
a target via a given port, either on the sending object or on another object.

Generalizations

• None

Attributes

• None

Associations

• onPort : Port [0..1], A optional port of the receiver object on which the behavioral feature is invoked.

1.1.1 StructuredClasses

1.1.1.1 Overview

Precise semantics of UML composite structures, DRAFT version 20120810 5

1.1.1.1 Class descriptions

Class

A class has the capability to have an internal structure and ports.

Generalizations

• EncapsulatedClassifier (from CompositeStructuresSyntaxAndSemantics::Syntax::CompositeStructures::Ports)

Attributes

• None

 6 Precise semantics of UML composite structures, DRAFT version 20120810

Figure 3: StructuredClasses diagram

Figure 4: StructuredClasses package
relationships diagram

Associations

• None

1.1.2 InternalStructures

1.1.2.1 Overview

Precise semantics of UML composite structures, DRAFT version 20120810 7

Figure 5: InternalStructures diagram

1.1.1.2 Class descriptions

ConnectorEnd

A connector end is an endpoint of a connector, which attaches the connector to a connectable element. Each connector
end is part of one connector.

Generalizations

• MultiplicityElement (from fUML::Syntax::Classes::Kernel)

Attributes

• None

Associations

• definingEnd : Property [0..1], A derived association referencing the corresponding association end on the
association which types the connector owing this connector end. This association is derived by selecting the
association end at the same place in the ordering of association ends as this connector end.

• role : ConnectableElement [1..1], The connectable element attached at this connector end. When an instance of
the containing classifier is created, a link may (depending on the multiplicities) be created to an instance of the
classifier that types this connectable element.

StructuredClassifier

A structured classifier is an abstract metaclass that represents any classifier whose behavior can be fully or partly
described by the collaboration of owned or referenced instances.

 8 Precise semantics of UML composite structures, DRAFT version 20120810

Figure 6: InternalStructures
package relationship diagram

Generalizations

• Classifier (from fUML::Syntax::Classes::Kernel)

• Classifier (from CompositeStructuresSyntaxAndSemantics::Syntax::CompositeStructures::InternalStructures)

Attributes

• None

Associations

• ownedAttribute : Property [0..*], References the properties owned by the classifier.

• ownedConnector : Connector [0..*], References the connectors owned by the classifier.

• part : Property [0..*], References the properties specifying instances that the classifier owns by composition.
This association is derived, selecting those owned properties where isComposite is true.

• role : ConnectableElement [0..*], References the roles that instances may play in this classifier.

Class

Generalizations

• StructuredClassifier (from
CompositeStructuresSyntaxAndSemantics::Syntax::CompositeStructures::InternalStructures)

Attributes

• None

Associations

• ownedAttribute : Property [0..*],

ConnectableElement

ConnectableElement is an abstract metaclass representing a set of instances that play roles of a classifier. Connectable
elements may be joined by attached connectors and specify configurations of linked instances to be created within an
instance of the containing classifier.

Generalizations

• TypedElement (from fUML::Syntax::Classes::Kernel)

Attributes

• None

Precise semantics of UML composite structures, DRAFT version 20120810 9

Associations

• end : ConnectorEnd [0..*], Denotes a set of connector ends that attaches to this connectable element.

Feature

Generalizations

• RedefinableElement (from fUML::Syntax::Classes::Kernel)

Attributes

• None

Associations

• featuringClassifier : Classifier [0..*],

Classifier

A classifier has the capability to own collaboration uses. These collaboration uses link a collaboration with the classifier
to give a description of the workings of the classifier.

Generalizations

• Namespace (from fUML::Syntax::Classes::Kernel)

Attributes

• None

Associations

• attribute : Property [0..*], Refers to all of the Properties that are direct (i.e. not inherited or imported) attributes
of the classifier.

• feature : Feature [0..*],

Property

A property represents a set of instances that are owned by a containing classifier instance.

Generalizations

• ConnectableElement (from
CompositeStructuresSyntaxAndSemantics::Syntax::CompositeStructures::InternalStructures)

• StructuralFeature (from fUML::Syntax::Classes::Kernel)

Attributes

• None

 10 Precise semantics of UML composite structures, DRAFT version 20120810

Associations

• class : Class [0..1],

Connector

Specifies a link that enables communication between two or more instances. This link may be an instance of an
association, or it may represent the possibility of the instances being able to communicate because their identities are
known by virtue of being passed in as parameters, held in variables or slots, or because the communicating instances are
the same instance. The link may be realized by something as simple as a pointer or by something as complex as a network
connection. In contrast to associations, which specify links between any instance of the associated classifiers, connectors
specify links between instances playing the connected parts only.

Generalizations

• Feature (from fUML::Syntax::Classes::Kernel)

• Feature (from CompositeStructuresSyntaxAndSemantics::Syntax::CompositeStructures::InternalStructures)

Attributes

• None

Associations

• end : ConnectorEnd [2..*], A connector consists of at least two connector ends, each representing the
participation of instances of the classifiers typing the connectable elements attached to this end. The set of
connector ends is ordered.

• redefinedConnector : Connector [0..*], A connector may be redefined when its containing classifier is
specialized. The redefining connector may have a type that specializes the type of the redefined connector. The
types of the connector ends of the redefining connector may specialize the types of the connector ends of the
redefined connector. The properties of the connector ends of the redefining connector may be replaced.

• type : Association [0..1], An optional association that specifies the link corresponding to this connector.

1.1.3 Ports

1.1.3.1 Overview

Precise semantics of UML composite structures, DRAFT version 20120810 11

 12 Precise semantics of UML composite structures, DRAFT version 20120810

Figure 7: Ports diagram

Figure 8: Ports package relationships diagram

1.1.1.3 Class descriptions

Port

A port is a property of a classifier that specifies a distinct interaction point between that classifier and its environment or
between the (behavior of the) classifier and its internal parts. Ports are connected to properties of the classifier by
connectors through which requests can be made to invoke the behavioral features of a classifier. A Port may specify the
services a classifier provides (offers) to its environment as well as the services that a classifier expects (requires) of its
environment.

Generalizations

• Property (from fUML::Syntax::Classes::Kernel)

• Property (from CompositeStructuresSyntaxAndSemantics::Syntax::CompositeStructures::InternalStructures)

Attributes

• isBehavior : Boolean [1..1], Specifies whether requests arriving at this port are sent to the classifier behavior of
this classifier. Such ports are referred to as behavior port. Any invocation of a behavioral feature targeted at a
behavior port will be handled by the instance of the owning classifier itself, rather than by any instances that this
classifier may contain.

• isConjugated : Boolean [1..1], Specifies the way that the provided and required interfaces are derived from the
Port's Type. The default value is false.

• isService : Boolean [1..1], If true indicates that this port is used to provide the published functionality of a
classifier; if false, this port is used to implement the classifier but is not part of the essential externally-visible
functionality of the classifier and can, therefore, be altered or deleted along with the internal implementation of
the classifier and other properties that are considered part of its implementation.

Associations

• provided : Interface [0..*], References the interfaces specifying the set of operations and receptions that the
classifier offers to its environment via this port, and which it will handle either directly or by forwarding it to a
part of its internal structure. This association is derived according to the value of isConjugated. If isConjugated
is false, provided is derived as the union of the sets of interfaces realized by the type of the port and its
supertypes, or directly from the type of the port if the port is typed by an interface. If isConjugated is true, it is
derived as the union of the sets of interfaces used by the type of the port and its supertypes.

• redefinedPort : Port [0..*], A port may be redefined when its containing classifier is specialized. The redefining
port may have additional interfaces to those that are associated with the redefined port or it may replace an
interface by one of its subtypes.

• required : Interface [0..*], References the interfaces specifying the set of operations and receptions that the
classifier expects its environment to handle via this port. This association is derived according to the value of
isConjugated. If isConjugated is false, required is derived as the union of the sets of interfaces used by the type
of the port and its supertypes. If isConjugated is true, it is derived as the union of the sets of interfaces realized
by the type of the port and its supertypes, or directly from the type of the port if the port is typed by an interface.

EncapsulatedClassifier

A classifier has the ability to own ports as specific and type checked interaction points.

Precise semantics of UML composite structures, DRAFT version 20120810 13

Generalizations

• StructuredClassifier (from
CompositeStructuresSyntaxAndSemantics::Syntax::CompositeStructures::InternalStructures)

Attributes

• None

Associations

• ownedPort : Port [0..*], References a set of ports that an encapsulated classifier owns.

ConnectorEnd

A connector end is an endpoint of a connector, which attaches the connector to a connectable element. Each connector
end is part of one connector.

Generalizations

• None

Attributes

• None

Associations

• partWithPort : Property [0..1], Indicates the role of the internal structure of a classifier with the port to which the
connector end is attached.

1.1 Components

1.1.1 Overview

1.1.4 BasicComponents

1.1.4.1 Overview

 14 Precise semantics of UML composite structures, DRAFT version 20120810

Figure 9: BasicComponents diagram

1.1.1.4 Class descriptions

Connector

A delegation connector is a connector that links the external contract of a component (as specified by its ports) to the
realization of that behavior. It represents the forwarding of events (operation requests and events): a signal that arrives at
a port that has a delegation connector to one or more parts or ports on parts will be passed on to those targets for
handling. An assembly connector is a connector between two or more parts or ports on parts that defines that one or more
parts provide the services that other parts use.

Generalizations

• None

Attributes

• kind : ConnectorKind [1..1], Indicates the kind of connector. This is derived: a connector with one or more ends
connected to a Port which is not on a Part and which is not a behavior port is a delegation; otherwise it is an
assembly.

Associations

• None

Precise semantics of UML composite structures, DRAFT version 20120810 15

Figure 10: BasicComponents package relationships diagram

1.2 Classes

1.2.1 Overview

1.1.5 Interfaces

1.1.5.1 Overview

 16 Precise semantics of UML composite structures, DRAFT version 20120810

Figure 11: Interfaces diagram

1.1.1.5 Class descriptions

BehavioredClassifier

A behaviored classifier may have an interface realization.

Generalizations

• NamedElement (from CompositeStructuresSyntaxAndSemantics::Syntax::Classes::Dependencies)

• Classifier (from fUML::Syntax::Classes::Kernel)

Attributes

• None

Associations

• interfaceRealization : InterfaceRealization [0..*], The set of InterfaceRealizations owned by the
BehavioredClassifier. Interface realizations reference the Interfaces of which the BehavioredClassifier is an
implementation.

Classifier

Generalizations

• Namespace (from CompositeStructuresSyntaxAndSemantics::Syntax::Classes::Dependencies)

Attributes

• None

Precise semantics of UML composite structures, DRAFT version 20120810 17

Figure 12: Interfaces package relationships diagram

Associations

• attribute : Property [0..*],

Operation

Generalizations

• BehavioralFeature (from fUML::Syntax::Classes::Kernel)

Attributes

• None

Associations

• interface : Interface [0..1], The Interface that owns this Operation.

Interface

An interface is a kind of classifier that represents a declaration of a set of coherent public features and obligations. An
interface specifies a contract; any instance of a classifier that realizes the interface must fulfill that contract. The
obligations that may be associated with an interface are in the form of various kinds of constraints (such as pre- and post-
conditions) or protocol specifications, which may impose ordering restrictions on interactions through the interface.

Generalizations

• Classifier (from CompositeStructuresSyntaxAndSemantics::Syntax::Classes::Interfaces)

• Classifier (from fUML::Syntax::Classes::Kernel)

Attributes

• None

Associations

• nestedClassifier : Classifier [0..*], References all the Classifiers that are defined (nested) within the Class.

• ownedAttribute : Property [0..*], The attributes (i.e. the properties) owned by the class.

• ownedOperation : Operation [0..*], The operations owned by the class.

• redefinedInterface : Interface [0..*], References all the Interfaces redefined by this Interface.

InterfaceRealization

An interface realization is a specialized realization relationship between a classifier and an interface. This relationship
signifies that the realizing classifier conforms to the contract specified by the interface.

Generalizations

• Realization (from CompositeStructuresSyntaxAndSemantics::Syntax::Classes::Dependencies)

 18 Precise semantics of UML composite structures, DRAFT version 20120810

Attributes

• None

Associations

• contract : Interface [1..1], References the Interface specifying the conformance contract.

• implementingClassifier : BehavioredClassifier [1..1], References the BehavioredClassifier that owns this
Interfacerealization (i.e., the classifier that realizes the Interface to which it points).

Property

Generalizations

• StructuralFeature (from fUML::Syntax::Classes::Kernel)

Attributes

• None

Associations

• interface : Interface [0..1], References the Interface that owns the Property

1.1.6 Dependencies

1.1.6.1 Overview

Precise semantics of UML composite structures, DRAFT version 20120810 19

 20 Precise semantics of UML composite structures, DRAFT version 20120810

Figure 13: Dependencies diagram

Figure 14: Dependencies package relationships diagram

1.1.1.6 Class descriptions

PackageableElement

Generalizations

• NamedElement (from CompositeStructuresSyntaxAndSemantics::Syntax::Classes::Dependencies)

Attributes

• None

Associations

• None

Classifier

Generalizations

• Namespace (from CompositeStructuresSyntaxAndSemantics::Syntax::Classes::Dependencies)

Attributes

• None

Associations

• None

Usage

A usage is a relationship in which one element requires another element (or set of elements) for its full implementation or
operation. A usage is a dependency in which the client requires the presence of the supplier.

Generalizations

• Dependency (from CompositeStructuresSyntaxAndSemantics::Syntax::Classes::Dependencies)

Attributes

• None

Associations

• None

Precise semantics of UML composite structures, DRAFT version 20120810 21

NamedElement

Generalizations

• Element (from fUML::Syntax::Classes::Kernel)

Attributes

• None

Associations

• clientDependency : Dependency [0..*], Indicates the dependencies that reference the client.

• namespace : Namespace [0..1], Specifies the namespace that owns the NamedElement.

Namespace

Generalizations

• NamedElement (from CompositeStructuresSyntaxAndSemantics::Syntax::Classes::Dependencies)

Attributes

• None

Associations

• ownedMember : NamedElement [0..*], A collection of NamedElements owned by the Namespace.

Abstraction

An abstraction is a relationship that relates two elements or sets of elements that represent the same concept at different
levels of abstraction or from different viewpoints.

Generalizations

• Dependency (from CompositeStructuresSyntaxAndSemantics::Syntax::Classes::Dependencies)

Attributes

• None

Associations

• None

 22 Precise semantics of UML composite structures, DRAFT version 20120810

Dependency

A dependency is a relationship that signifies that a single or a set of model elements requires other model elements for
their specification or implementation. This means that the complete semantics of the depending elements is either
semantically or structurally dependent on the definition of the supplier element(s).

Generalizations

• PackageableElement (from CompositeStructuresSyntaxAndSemantics::Syntax::Classes::Dependencies)

Attributes

• None

Associations

• client : NamedElement [1..*], The element(s) dependent on the supplier element(s). In some cases (such as a
Trace Abstraction) the assignment of direction (that is, the designation of the client element) is at the discretion
of the modeler, and is a stipulation.

• supplier : NamedElement [1..*], The element(s) independent of the client element(s), in the same respect and the
same dependency relationship. In some directed dependency relationships (such as Refinement Abstractions), a
common convention in the domain of class-based OO software is to put the more abstract element in this role.
Despite this convention, users of UML may stipulate a sense of dependency suitable for their domain, which
makes a more abstract element dependent on that which is more specific.

Realization

Realization is a specialized abstraction relationship between two sets of model elements, one representing a specification
(the supplier) and the other represents an implementation of the latter (the client). Realization can be used to model
stepwise refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.

Generalizations

• Abstraction (from CompositeStructuresSyntaxAndSemantics::Syntax::Classes::Dependencies)

Attributes

• None

Associations

• None

Precise semantics of UML composite structures, DRAFT version 20120810 23

1.3 CommonBehaviors

1.3.1 Overview

1.1.7 Communications

1.1.7.1 Overview

 24 Precise semantics of UML composite structures, DRAFT version 20120810

Figure 15: Communications package
relationships diagram

Figure 16: Communications diagram

1.1.1.7 Class descriptions

Interface

Interfaces may include receptions (in addition to operations).

Generalizations

• Classifier (from fUML::Syntax::Classes::Kernel)

Attributes

• None

Associations

• ownedReception : Reception [0..*], Receptions that objects providing this interface are willing to accept.

Reception

A reception is a declaration stating that a classifier is prepared to react to the receipt of a signal. A reception designates a
signal and specifies the expected behavioral response. The details of handling a signal are specified by the behavior
associated with the reception or the classifier itself.

Generalizations

• BehavioralFeature (from fUML::Syntax::Classes::Kernel)

Attributes

• None

Associations

• None

Precise semantics of UML composite structures, DRAFT version 20120810 25

8 Semantics

8.1 Overview

TODO.

8.2 Loci

8.2.1 Overview

8.2.2 LociL3

8.2.2.1 Overview

8.2.2.2 Class descriptions

CS_ExecutionFactoryL3

Generalizations

• ExecutionFactoryL3 (from fUML::Semantics::Loci::LociL3)

Attributes

• None

Associations

• None

 26 Precise semantics of UML composite structures, DRAFT version 20120810

Figure 17: LociL3 diagram

Operations

instantiateVisitor (element:Element) : SemanticVisitor

 // TODO
 return super.instantiateVisitor(element) ;

1.1 Classes

1.1.1 Overview

1.1.1 Kernel

1.1.1.1 Overview

1.1.1.1 Class descriptions

CS_DispatchWithAccountForInterfacesStrategy

Extends fUML RedefinitionBasedDispatchStrategy to account for the fact that the invoked operation may belong to an
interface, and not to one of the classifiers of the target object (NOTE: Not mandatory to have it defined as an extension.
Could be defined as direct specialization of DispatchStrategy)

Generalizations

• RedefinitionBasedDispatchStrategy (from fUML::Semantics::Classes::Kernel)

Attributes

• None

Precise semantics of UML composite structures, DRAFT version 20120810 27

Figure 18: Kernel diagram

Associations

• None

Operations

getMethod (object:Object, operation:Operation) : Behavior

 // Override getMethod so that it accounts for the fact that the Operation
 // may belong to an Interface (realized by one of the classifier of object),
 // and not directly to one of the classifier of object.
 return null ;

operationsMatch (ownedOperation:Operation, baseOperation:Operation) : Boolean

 // Override operationsMatch, in the case where baseOperation belongs
 // to an Interface
 return false ;

1.2 Actions

1.2.1 Overview

1.1.2 IntermediateActions

1.1.2.1 Overview

1.1.1.2 Class descriptions

CS_AddStructuralFeatureValueActionActivation

The behavior of fUML AddStructuralFeatureActionActivation::doAction() is overriden. In the case where the targeted
structural feature is a port and the value to be added is a Reference, an InteractionPoint is created on the basis of the given
Reference. It then behaves like in fUML, except that the execution continues using the created InteractionPoint instead of
the given Reference.

Generalizations

• AddStructuralFeatureValueActionActivation (from fUML::Semantics::Actions::IntermediateActions)

 28 Precise semantics of UML composite structures, DRAFT version 20120810

Figure 19: IntermediateActions diagram

Attributes

• None

Associations

• None

Operations

doAction ()

 // If the feature is a port and the input value to be added is a
 // Reference,
 // Replaces this Reference by an InteractionPoint, and then behaves
 // as usual.
 // If the feature is not a port, behaves as usual

 AddStructuralFeatureValueAction action = (AddStructuralFeatureValueAction) (this.node);
 StructuralFeature feature = action.structuralFeature;

 if (!(feature instanceof Port)) {
 // Behaves as usual
 super.doAction();
 } else {
 ValueList inputValues = this.takeTokens(action.value);
 // NOTE: Multiplicity of the value input pin is required to be 1..1.
 Value inputValue = inputValues.getValue(0);
 if (inputValue instanceof Reference) {
 // First constructs an InteractionPoint from the inputValue
 Reference reference = (Reference) inputValue;
 CS_InteractionPoint interactionPoint = new CS_InteractionPoint();
 interactionPoint.referent = reference.referent;
 interactionPoint.definingPort = (Port) feature;
 // The value on action.object is necessarily instanceof
 // ReferenceToCompositeStructure (otherwise, the feature cannot
 // be a port)
 CS_Reference owner = (CS_Reference) this.takeTokens(
 action.object).getValue(0);
 interactionPoint.owner = owner;
 // Then replaces the Reference by an InteractionPoint
 // in the inputValues
 inputValues.remove(0);
 inputValues.addValue(0, interactionPoint);
 // Finally concludes with usual fUML behavior of
 // AddStructuralFeatureValueAction (i.e., the usual behavior
 // when
 // the value on action.object pin is a StructuredValue)
 Integer insertAt = 0;
 if (action.insertAt != null) {
 insertAt = ((UnlimitedNaturalValue) this.takeTokens(
 action.insertAt).getValue(0)).value.naturalValue;
 }
 if (action.isReplaceAll) {
 owner.setFeatureValue(feature, inputValues, 0);
 } else {
 FeatureValue featureValue = owner.getFeatureValue(feature);

 if (featureValue.values.size() > 0 & insertAt == 0) {
 // If there is no insertAt pin, then the structural
 // feature must
 // be unordered, and the insertion position is
 // immaterial.
 insertAt = ((ChoiceStrategy) this.getExecutionLocus().factory
 .getStrategy("choice"))
 .choose(featureValue.values.size());
 }
 if (feature.multiplicityElement.isUnique) {
 // Remove any existing value that duplicates the input
 // value
 Integer j = position(inputValue, featureValue.values, 1);

Precise semantics of UML composite structures, DRAFT version 20120810 29

 if (j > 0) {
 featureValue.values.remove(j - 1);
 if (insertAt > 0 & j < insertAt) {
 insertAt = insertAt - 1;
 }
 }
 }

 if (insertAt <= 0) {
 // Note: insertAt = -1 indicates an unlimited value of
 // "*"
 featureValue.values.addValue(inputValue);
 } else {
 featureValue.values.addValue(insertAt - 1, inputValue);
 }
 }
 } else {
 // behaves as usual
 super.doAction();
 }
 }

1.3 CompositeStructures

1.3.1 Overview

1.1.3 StructuredClasses

1.1.3.1 Overview

 30 Precise semantics of UML composite structures, DRAFT version 20120810

Figure 20: StructuredClasses diagram

1.1.1.3 Class descriptions

CS_InteractionPoint

An InteractionPoint represents the runtime manifestation of a Reference to an Object playing the role of a Port. More
specifically, it overrides operation dispatching and signal receptions in order to capture the specific propagation
semantics of requests targeting a port.
NOTE: This class is related to the following requirements:
- R1. The target value of an invocation action may also be a port. In this case, the invocation request is sent to the object
owning this port as identified by the port identity, and is, upon arrival, handled as described in "Port" clause

Generalizations

• Reference (from fUML::Semantics::Classes::Kernel)

Attributes

• None

Associations

• owner : CS_Reference[1..1], Represents the Reference to the CompositeObject owning this InteractionPort.
NOTE: This is introduced to address requirement R3 (It represents the "link from that instance to the instance of
the owning classifier [...] through which communication is forwarded to the instance of the owning classifier or
through which the owning classifier communicates)

• definingPort : Port[1..1], The Port for which this InteractionPoint is a runtime manifestation

Operations

startBehavior (classifier:Class, inputs:ParameterValue[*])

 // Overriden to do nothing

dispatch (operation:Operation) : Execution

 // Delegates dispatching to the owning object
 return this.owner.dispatchIn(operation, this) ;

send (signalInstance:SignalInstance)

 // Delegates sending to the owning object
 this.owner.sendIn(signalInstance, this) ;

CS_Link

ConnectorInstance extends Link with the ability to specify that this association instance plays a particular Connector.
NOTE: The execution model described in this specification makes the hypothesis that connectors are necessarily typed by
an Association.

Generalizations

• Link (from fUML::Semantics::Classes::Kernel)

Precise semantics of UML composite structures, DRAFT version 20120810 31

Attributes

• None

Associations

• definingConnector : Connector[1..1], The Connector played by this ConnectorInstance

Operations

None

CS_Reference

This class extends fuml Reference with specific operations for managing request propagation through ports, from the
environment to the internals of the referent object, or from the referent objet to its environment. (NOTE: Addresses
requirement R1 "The target value of an invocation action may also be a port. In this case, the invocation request is sent to
the object owning this port as identified by the port identity, and is, upon arrival, handled as described in "Port" clause",
and R2 "Invocation actions may also be sent to a target via a given port, either on the sending object or on another
object.")

Generalizations

• Reference (from fUML::Semantics::Classes::Kernel)

Attributes

• None

Associations

• compositeReferent : CS_Object[1..1], The composite object referenced by this ReferenceToCompositeStructure.
This property subsets Reference::referent.

Operations

dispatchIn (operation:Operation, interactionPoint:CS_InteractionPoint) : Execution

 //Delegates dispatching to composite referent
 return this.compositeReferent.dispatchIn(operation,
 interactionPoint) ;

sendIn (signalInstance:SignalInstance, interactionPoint:CS_InteractionPoint)

 // delegates sending to composite referent
 this.compositeReferent.sendIn(signalInstance, interactionPoint) ;

sendOut (signalInstance:SignalInstance, onPort:Port)

 // Delegates sending (through the port, to the environment)
 // to compositeReferent
 this.compositeReferent.sendOut(signalInstance, onPort) ;

dispatchOut (operation:Operation, onPort:Port) : Execution

 // Delegates dispatching (through the port, to the environment)
 // to compositeReferent
 return this.compositeReferent.dispatchOut(operation, onPort) ;

 32 Precise semantics of UML composite structures, DRAFT version 20120810

CS_Object

CompositeObject extends fUML Object with specific operations for managing propagations of requests through ports,
from the environment to the internals of this object, or from the objet to its environment.
NOTE, this class addresses the following requirements:
- R4: If connectors are attached to both the port when used on a property within the internal structure of a classifier and
the port on the container of an internal structure, the instance of the owning classifier will forward any requests arriving at
this port along the link specified by those connectors.
- R5: If there is a connector attached to only one side of a port, any requests arriving at this port will terminante at this
port [Non-behavior port]
- R6: For a behavior port, the instance of the owning classifier will handle requests arriving at this port (as specified in the
behavior of the classifier), if this classifier has any behavior.
- R7: If there is no behavior defined for this classifier, any communication arriving at a behavior port is lost.
- R8: If several connectors are attached on one side of a port, then any request arriving at this port on a link derived from
a connector on the other side of the port will be fowarded on links corresponding to these connectors. It is a semantic
variation point whether these requests will be forwarded on all links, or on only one of those links.

Generalizations

• Object (from fUML::Semantics::Classes::Kernel)

Attributes

• None

Associations

• ownedConnectorInstances : CS_Link[0..*], The collection of ConnectorInstance owned by this
CompositeObject. For each ConnectorInstance, definingConnector is a Connector belonging to one of the Class
typing this CompositeObject

Operations

dispatchIn (operation:Operation, interactionPoint:CS_InteractionPoint) : Execution

 // If the interaction is a behavior port, does nothing [for the moment... ?],
 // since the only kind of event supported in fUML is SignalEvent
 // If this is not a behavior port, select appropriate delegation links
 // from interactionPoint, and propagates the operation call through
 // these links
 Execution execution = null ;
 if (interactionPoint.definingPort.isBehavior) {
 // Do nothing
 }
 else {
 ReferenceList targets =
 this.selectTargetsForDispatching(operation, interactionPoint) ;
 // If targets is empty, no delegation target have been found,
 // and the operation call will be lost
 if (! (targets.size()==0)) {
 // Choose one target non-deterministically
 Integer index =
 ((ChoiceStrategy)this.locus.factory.getStrategy("choice"))
 .choose(targets.size()) ;
 Reference target = targets.getValue(index - 1) ;
 execution = target.dispatch(operation) ;
 }
 }
 return execution ;

Precise semantics of UML composite structures, DRAFT version 20120810 33

sendIn (signalInstance:SignalInstance, interactionPoint:CS_InteractionPoint)

 // If the interaction is a behavior port,
 // creates a SignalInstanceWithPort from the signal instance,
 // and sends it as usual using operation send
 // If this is not a behavior port,
 // select appropriate delegation targets from interactionPoint,
 // and propagates the signal to these targets
 if (interactionPoint.definingPort.isBehavior) {
 CS_SignalInstance newSignalInstance =
 new CS_SignalInstance() ;
 SignalInstance copy = (SignalInstance)signalInstance.copy() ;
 newSignalInstance.featureValues = copy.featureValues ;
 newSignalInstance.type = copy.type ;
 newSignalInstance.interactionPoint = interactionPoint ;
 this.send(newSignalInstance) ;
 }
 else {
 ReferenceList targets =
 this.selectTargetsForSending(signalInstance,
 interactionPoint) ;
 // If targets is empty, no delegation target have been found,
 // and the signal is lost
 Integer i = 1 ;
 // Do the following concurrently
 while (i <= targets.size()) {
 Reference target = targets.getValue(i-1) ;
 target.send(signalInstance) ;
 i = i + 1 ;
 }
 }

selectTargetsForSending (signalInstance:SignalInstance, interactionPoint:CS_InteractionPoint) :
Reference[*]

 // From the given signalInstance and interactionPoint,
 // retrieves potential connectors through which request can be delegated
 // These connectors are delegation connectors attached to
 // Port interactionPoint.definingPort, and whose target provide a
 // reception for Signal signalInstance.type
 ConnectorList connectors =
 this.selectConnectorsForSending(signalInstance.type,
 interactionPoint.definingPort) ;

 // Select links owned by the context object for which the
 // definingConnector is included in the list of matching connectors.
 Integer i = 1 ;
 CS_LinkList connectorInstances =
 new CS_LinkList() ;
 while (i <= connectors.size()) {
 Integer j = 1 ;
 Connector connector = connectors.getValue(i-1) ;
 while (j <= this.ownedConnectorInstances.size()) {
 CS_Link connectorInstance =
 this.ownedConnectorInstances.getValue(j-1) ;
 if (connectorInstance.definingConnector == connector) {
 connectorInstances.addValue(connectorInstance) ;
 }
 j=j+1 ;
 }
 i = i+1 ;
 }

 // For each matching link, retrieves the end value opposite
 // to interactionPoint.
 // If this value is a reference (which means that it is possible to send it
 // a signal), it is added in the list of potential targets.
 ReferenceList targets = new ReferenceList() ;
 i = 1 ;
 while (i <= connectorInstances.size()) {
 CS_Link link = connectorInstances.getValue(i-1) ;
 Association association = link.type ;
 Property oppositeEnd = association.memberEnd.getValue(0);
 if (oppositeEnd == interactionPoint.definingPort) {
 oppositeEnd = association.memberEnd.getValue(1);
 }
 Value value = link.getFeatureValue(oppositeEnd).values.getValue(0) ;

 34 Precise semantics of UML composite structures, DRAFT version 20120810

 if (value instanceof Reference) {
 targets.addValue((Reference)value) ;
 }
 i = i + 1;
 }

 // if targets is empty, no matching targets have been found,
 // and the signal instance will be lost
 return targets ;

selectConnectorsForSending (signal:Signal, port:Port) : Connector[*]

 // From the given signal and port, retrieves potential connectors
 // through which request can be delegated
 // These connectors are delegation connectors attached to Port
 // interactionPoint.definingPort,
 // and whose target provide a reception for Signal signalInstance.type
 ConnectorList connectors = new ConnectorList() ;
 Integer i = 1 ;
 // Iterates on types of this CompositeObject
 while (i <= this.types.size()) {
 Type t =this.types.getValue(i-1) ;
 if (t instanceof Class_) {
 Class_ class_ = (Class_) t ;
 Integer j = 1 ;
 // Iterates on Connectors of the current type
 while (j <= class_.encapsulatedClassifier.ownedConnector.size()) {
 Connector cddConnector =
 class_.encapsulatedClassifier.ownedConnector.getValue(j-1) ;
 if (cddConnector.kind == ConnectorKind.delegation) {
 Integer k = 1 ;
 Boolean matches = false ;
 // Iterates on ConnectorEnds of the current Connector
 while (k <= cddConnector.end.size() && !matches) {
 ConnectorEnd cddEnd = cddConnector.end.getValue(k-1) ;
 if (!(cddEnd.role.actualConnectableElement == port && cddEnd.partWithPort == null)) {
 if (cddEnd.role.actualConnectableElement instanceof Port) {
 // We have to look in provided interfaces of the port
 // if there is a reception defined for signal
 Integer l = 1 ;
 // Iterates on provided interfaces of the current end
 InterfaceList providedInterfaces =
 ((Port)cddEnd.role.actualConnectableElement).provided() ;
 while (l <= providedInterfaces.size() && !matches) {
 Interface interface_ =
 ((Port)cddEnd.role.actualConnectableElement).provided().getValue(l-1) ;
 // Iterates on Receptions of the current interface
 Integer m = 1 ;
 while (m <= interface_.ownedReception.size()
 && !matches) {
 if (interface_.ownedReception.getValue(m-1).signal
 == signal) {
 matches = true ;
 connectors.addValue(cddConnector) ;
 }
 m = m + 1 ;
 }
 l = l + 1 ;
 }
 if (matches == false) {
 // No matching reception has been found in reception
 // directly owned by provided interfaces
 // Need to check in inherited members of these
 //provided interfaces.
 l = 1 ;
 // Iterates again on provided interfaces
 while (l <= providedInterfaces.size() && ! matches) {
 Interface interface_ =
 providedInterfaces.getValue (l -1) ;
 // Iterates on inherited members of the current Interface
 Integer m = 1 ;
 while (m <= interface_.inheritedMember.size()
 && !matches) {
 NamedElement cddReception =
 interface_.inheritedMember.getValue(m-1) ;
 if ((cddReception instanceof Reception)
 &&

Precise semantics of UML composite structures, DRAFT version 20120810 35

 (((Reception)cddReception).signal == signal)) {
 matches = true ;
 connectors.addValue(cddConnector) ;
 }
 m = m + 1 ;
 }
 l = l + 1 ;
 }
 }
 }
 else {
 // The connector does not target a Port.
 // We have to look if the Classifier typing this property
 // directly or indirectly provides a Reception for signal
 Integer l = 1 ;
 if (cddEnd.role.actualConnectableElement.typedElement.type instanceof Classifier) {
 while (l <= ((Classifier)cddEnd.role
 .actualConnectableElement.typedElement.type).member.size()
 && !matches) {
 NamedElement cddReception =
 ((Classifier)cddEnd.role.actualConnectableElement.typedElement.type)
 .member.getValue(l-1) ;
 if ((cddReception instanceof Reception)
 &&
 (((Reception)cddReception).signal == signal)) {
 matches = true ;
 connectors.addValue(cddConnector) ;
 }
 l = l + 1 ;
 }
 }
 }
 }
 k = k + 1 ;
 }
 }
 j = j + 1 ;
 }
 i = i + 1 ;
 }
 }

 return connectors ;

selectTargetsForDispatching (operation:Operation, interactionPoint:CS_InteractionPoint) :
Reference[*]

 // From the given operation and interactionPoint, retrieves potential
 // connectors through which request can be delegated
 // These connectors are delegation connectors attached to Port
 // interactionPoint.definingPort,
 // and whose target provides or realize operation
 ConnectorList connectors =
 this.selectConnectorsForDispatching(operation,
 interactionPoint.definingPort) ;

 // Select links owned by the context object for which the
 // definingConnector is included in the list of matching connectors.
 Integer i = 1 ;
 CS_LinkList connectorInstances =
 new CS_LinkList() ;
 while (i <= connectors.size()) {
 Integer j = 1 ;
 Connector connector = connectors.getValue(i-1) ;
 while (j <= this.ownedConnectorInstances.size()) {
 CS_Link connectorInstance =
 this.ownedConnectorInstances.getValue(j-1) ;
 if (connectorInstance.definingConnector == connector) {
 connectorInstances.addValue(connectorInstance) ;
 }
 j=j+1 ;
 }
 i = i+1 ;
 }

 // For each matching link, retrieves the end value opposite
 // to interactionPoint.

 36 Precise semantics of UML composite structures, DRAFT version 20120810

 // If this value is a reference (which means that it is possible to dispatch
 // operation to it), it is added in the list of potential targets.
 ReferenceList targets = new ReferenceList() ;
 i = 1 ;
 while (i <= connectorInstances.size()) {
 CS_Link link = connectorInstances.getValue(i-1) ;
 Association association = link.type ;
 Property oppositeEnd = association.memberEnd.getValue(0);
 if (oppositeEnd == interactionPoint.definingPort) {
 oppositeEnd = association.memberEnd.getValue(1);
 }
 Value value = link.getFeatureValue(oppositeEnd).values.getValue(0) ;
 if (value instanceof Reference) {
 targets.addValue((Reference)value) ;
 }
 i = i + 1;
 }

 // if targets is empty, no matching targets have been found,
 // and the operation call will be lost
 return targets ;

selectConnectorsForDispatching (operation:Operation, port:Port) : Connector[*]

 // From the given signal and port, retrieves potential connectors through
 // which request can be delegated. These connectors are delegation
 // connectors attached to Port interactionPoint.definingPort, and whose
 //target provides the requested operation

 ConnectorList connectors = new ConnectorList() ;
 Integer i = 1 ;
 // Iterates on types of this CompositeObject
 while (i <= this.types.size()) {
 Type t =this.types.getValue(i-1) ;
 if (t instanceof Class_) {
 Class_ class_ = (Class_) t ;
 Integer j = 1 ;
 // Iterates on Connectors of the current type
 while (j <= class_.encapsulatedClassifier.ownedConnector.size()) {
 Connector cddConnector = class_.encapsulatedClassifier.ownedConnector.getValue(j-1) ;
 if (cddConnector.kind == ConnectorKind.delegation) {
 Integer k = 1 ;
 Boolean matches = false ;
 // Iterates on ConnectorEnds of the current Connector
 while (k <= cddConnector.end.size() && !matches) {
 ConnectorEnd cddEnd = cddConnector.end.getValue(k-1) ;
 if (!(cddEnd.role.actualConnectableElement == port && cddEnd.partWithPort == null)) {
 if (cddEnd.role.actualConnectableElement instanceof Port) {
 if (operation.owner instanceof Interface) {
 // We have to look in provided interfaces of the port if
 // they define directly or indirectly the Operation
 Integer l = 1 ;
 // Iterates on provided interfaces of the current end
 InterfaceList providedInterfaces =
 ((Port)cddEnd.role.actualConnectableElement).provided() ;
 while (l <= providedInterfaces.size() && !matches) {
 Interface interface_ = ((Port)cddEnd.role.actualConnectableElement)
 .provided()
 .getValue(l-1) ;
 // Iterates on members of the current Interface
 Integer m = 1 ;
 while (m <= interface_.member.size() && !matches) {
 NamedElement cddOperation =
 interface_.member
 .getValue(m-1) ;
 if (cddOperation instanceof Operation) {
 DispatchWithAccountForInterfacesStrategy strategy =
 new DispatchWithAccountForInterfacesStrategy() ;
 matches =
 strategy.operationsMatch(
 (Operation)cddOperation,
 operation) ;
 if (matches) {
 connectors.addValue(cddConnector) ;
 }
 }
 m = m + 1 ;

Precise semantics of UML composite structures, DRAFT version 20120810 37

 }
 l = l + 1 ;
 }
 }
 }
 else {
 // The connector does not target a Port.
 // We have to look if the Classifier typing this property
 // directly or indirectly provides a Reception for signal
 Integer l = 1 ;
 if (cddEnd.role.actualConnectableElement.typedElement.type instanceof Class_) {
 while (l <= ((Class_)cddEnd.role.actualConnectableElement.typedElement.type)
 .member.size()
 && !matches) {
 NamedElement cddOperation =
 ((Class_)cddEnd.role.actualConnectableElement.typedElement.type)
 .member.getValue(l-1) ;
 if (cddOperation instanceof Operation) {
 DispatchWithAccountForInterfacesStrategy strategy =
 new DispatchWithAccountForInterfacesStrategy() ;
 matches =
 strategy.operationsMatch(
 (Operation)cddOperation,
 operation) ;
 if (matches) {
 connectors.addValue(cddConnector) ;
 }
 }
 l = l + 1 ;
 }
 }
 }
 }
 k = k + 1 ;
 }
 }
 j = j + 1 ;
 }
 i = i + 1 ;
 }
 }

 return connectors ;

sendOut (signalInstance:SignalInstance, onPort:Port)

 // TODO:
 // Propagate the signal instance through interaction points
 // corresponding to onPorts, following appropriate links.
 // This will result in calling send(signalInstance) on
 // oppositeEnd found from the links

dispatchOut (operation:Operation, onPort:Port) : Execution

 // TODO:
 // Propagate the operation call through interaction points corresponding
 // to onPorts, following appropriate links,
 // This will result in calling dispatch(operation) on oppositeEnd found
 // from the links

 return null ;

 38 Precise semantics of UML composite structures, DRAFT version 20120810

1.1.4 InvocationActions

1.1.4.1 Overview

1.1.1.4 Class descriptions

CS_SendSignalActionActivation

Extends behavior of fUML SendSignalActionActivation::doAction(). If onPort is specified, instead of sending directly to
target reference by calling operation send, sendOut (cf. ReferenceToCompositeStructure) is called, so that the constructed
signal instance will be finally sent to the environment. (Note: Addresses requirement R2 "Invocation actions may also be
sent to a target via a given port, either on the sending object or on another object.")

Generalizations

• SendSignalActionActivation (from fUML::Semantics::Actions::BasicActions)

Attributes

• None

Associations

• None

Operations

doAction ()

 // If onPort is not specified, behaves like in fUML
 // If onPort is specified,
 // Get the value from the target pin. If the value is not a reference,
 // then do nothing.
 // Otherwise, construct a signal using the values from the argument pins
 // As compared to fUML, instead of sending directly to target reference

Precise semantics of UML composite structures, DRAFT version 20120810 39

Figure 21: InvocationActions diagram

 // by calling operation send,
 // sendOut is called, so that the constructed signal will be finally sent
 // to the environment.

 SendSignalAction action = (SendSignalAction)(this.node);

 if (action.onPort == null) {
 super.doAction() ;
 }
 else {
 Value target = this.takeTokens(action.target).getValue(0) ;

 if (target instanceof CS_Reference) {
 Signal signal = action.signal;
 SignalInstance signalInstance = new SignalInstance();
 signalInstance.type = signal;

 PropertyList attributes = signal.ownedAttribute;
 InputPinList argumentPins = action.argument;
 Integer i = 0 ;
 while (i < attributes.size()) {
 Property attribute = attributes.getValue(i);
 InputPin argumentPin = argumentPins.getValue(i);
 ValueList values = this.takeTokens(argumentPin);
 signalInstance.setFeatureValue(attribute, values, 0);
 }

 CS_Reference targetReference =
 (CS_Reference)target ;
 Port onPort = action.onPort ;
 targetReference.sendOut(signalInstance, onPort) ;
 }
 }

CS_SignalInstance

SignalInstanceWithPort extends fUML SignalInstance with the ability to reference the specific InteractionPoint on which
it occured. This is introduced to address the following requirements R9 ("Specifying one or more ports for an event
implies that the event triggers the execution of an associated behavior only if the event was received via one of the
specified ports.").

Generalizations

• SignalInstance (from fUML::Semantics::CommonBehaviors::Communications)

Attributes

• None

Associations

• interactionPoint : CS_InteractionPoint[1..1], The InteractionPoint on which this signal instance occured.

Operations

copy () : Value

 // Create a new signal instance with the same type, interaction point and feature values as this
signal instance.
 CS_SignalInstance newValue = (CS_SignalInstance) super.copy();
 newValue.type = this.type ;
 newValue.interactionPoint = this.interactionPoint ;
 return newValue;

 40 Precise semantics of UML composite structures, DRAFT version 20120810

CS_AcceptEventActionActivation

The behavior of fUML CallOperationActionActivation::match() is overriden, in order to account for the fact that a given
signal instance may need to be matched with triggers where a list of ports is given. (NOTE: Addresses requirement R9
"Specifying one or more ports for an event implies that the event triggers the execution of an associated behavior only if
the event was received via one of the specified ports.")

Generalizations

• AcceptEventActionActivation (from fUML::Semantics::Actions::CompleteActions)

Attributes

• None

Associations

• None

Operations

match (signalInstance:SignalInstance) : Boolean

 // Return true if the given signal instance matches a trigger of the accept
 // action of this activation.
 // Matching implies that the type of the signalInstance matches the Signal
 // of one of the triggers.
 // When the type matches with the Signal, and if the trigger specifies a
 // list of ports,
 // the signalInstance matches the trigger only if it occurred on a port
 // identified in the list.

 AcceptEventAction action = (AcceptEventAction)(this.node) ;
 TriggerList triggers = action.trigger ;
 Signal signal = signalInstance.type ;

 Boolean matches = false;
 Integer i = 1;
 while (!matches & i <= triggers.size()) {
 Trigger t = triggers.getValue(i-1) ;
 matches = ((SignalEvent)t.event).signal == signal ;
 if (matches) {
 if (! (signalInstance instanceof CS_SignalInstance)) {
 matches = false ;
 }
 else {
 PortList portsOfTrigger = t.port ;
 Port onPort =
 ((CS_SignalInstance)signalInstance).interactionPoint
 .definingPort ;
 Boolean portMatches = false ;
 Integer j = 1 ;
 while (! portMatches & j <= portsOfTrigger.size()) {
 portMatches = onPort == portsOfTrigger.getValue(j-1) ;
 j = j + 1 ;
 }
 matches = portMatches ;
 }
 }
 i = i + 1;
 }

 return matches;

Precise semantics of UML composite structures, DRAFT version 20120810 41

CS_CallOperationActionActivation

Extends fUML CallOperationActionActivation::getCallExecution(). If onPort is specified, instead of dispatching directly
to target reference by calling operation dispatch, dispatchOut (cf. ReferenceToCompositeStructure) is called, so that the
operation call will be finally dispatched to the environment (from where the execution will be taken). (Note: Adresses
requirement R2 "Invocation actions may also be sent to a target via a given port, either on the sending object or on
another object.")

Generalizations

• CallOperationActionActivation (from fUML::Semantics::Actions::BasicActions)

Attributes

• None

Associations

• None

Operations

getCallExecution () : Execution

 // If onPort is not specified, behaves like in fUML
 // If onPort is specified, and if the value on the target input pin is a
 // reference, dispatch the operation
 // to it and return the resulting execution object.
 // As compared to fUML, instead of dispatching directly to target reference
 // by calling operation dispatch,
 // dispatchOut is called, so that the operation call will be finally
 // dispatched to the environment (from where the execution will be taken).

 CallOperationAction action = (CallOperationAction)(this.node);
 Execution execution = null ;
 if (action.onPort == null) {
 execution = super.getCallExecution() ;
 }
 else {
 Value target = this.takeTokens(action.target).getValue(0);
 if (target instanceof CS_Reference) {
 execution = ((CS_Reference)target)
 .dispatchOut(action.operation, action.onPort);
 }
 }
 return execution;

 42 Precise semantics of UML composite structures, DRAFT version 20120810

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications [optional]
	6.2 Acknowledgements

	7 Abstract Syntax
	7.1 Overview
	7.2 CompositeStructures
	7.2.1 Overview
	7.2.2 InvocationActions
	7.2.2.1 Overview
	7.2.2.2 Class descriptions
	Trigger
	InvocationAction

	1.1.1 StructuredClasses
	1.1.1.1 Overview
	1.1.1.1 Class descriptions
	Class

	1.1.2 InternalStructures
	1.1.2.1 Overview
	1.1.1.2 Class descriptions
	ConnectorEnd
	StructuredClassifier
	Class
	ConnectableElement
	Feature
	Classifier
	Property
	Connector

	1.1.3 Ports
	1.1.3.1 Overview
	1.1.1.3 Class descriptions
	Port
	EncapsulatedClassifier
	ConnectorEnd

	1.1 Components
	1.1.1 Overview
	1.1.4 BasicComponents
	1.1.4.1 Overview
	1.1.1.4 Class descriptions
	Connector

	1.2 Classes
	1.2.1 Overview
	1.1.5 Interfaces
	1.1.5.1 Overview
	1.1.1.5 Class descriptions
	BehavioredClassifier
	Classifier
	Operation
	Interface
	InterfaceRealization
	Property

	1.1.6 Dependencies
	1.1.6.1 Overview
	1.1.1.6 Class descriptions
	PackageableElement
	Classifier
	Usage
	NamedElement
	Namespace
	Abstraction
	Dependency
	Realization

	1.3 CommonBehaviors
	1.3.1 Overview
	1.1.7 Communications
	1.1.7.1 Overview
	1.1.1.7 Class descriptions
	Interface
	Reception

	8 Semantics
	8.1 Overview
	8.2 Loci
	8.2.1 Overview
	8.2.2 LociL3
	8.2.2.1 Overview
	8.2.2.2 Class descriptions
	CS_ExecutionFactoryL3

	1.1 Classes
	1.1.1 Overview
	1.1.1 Kernel
	1.1.1.1 Overview
	1.1.1.1 Class descriptions
	CS_DispatchWithAccountForInterfacesStrategy

	1.2 Actions
	1.2.1 Overview
	1.1.2 IntermediateActions
	1.1.2.1 Overview
	1.1.1.2 Class descriptions
	CS_AddStructuralFeatureValueActionActivation

	1.3 CompositeStructures
	1.3.1 Overview
	1.1.3 StructuredClasses
	1.1.3.1 Overview
	1.1.1.3 Class descriptions
	CS_InteractionPoint
	CS_Link
	CS_Reference
	CS_Object

	1.1.4 InvocationActions
	1.1.4.1 Overview
	1.1.1.4 Class descriptions
	CS_SendSignalActionActivation
	CS_SignalInstance
	CS_AcceptEventActionActivation
	CS_CallOperationActionActivation

